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Why spintronics?
The end of Moore s law

Instructions per second (in millions) Number of transistors per year

100000 -

i) y 'y .
10060 Pent'unl@y World ant population
1000 4 Pentium®©2 g Number of raindrops in
/ california per year

100 - ]

”~ .
MIPS lgﬁ/ Pentium®
386 _

286 &

Source: Intel

Source: Intel

0-01 1 1 1 ]
1970 1975 1980 1985 1990 1995 2000 2005

'68 70 '72 '74 '76 '78 '80 '82 '84 '86 '88 '90 '92 '94 '96 '98 '00 '02

Source: Dataquestiintel, 12/02

Transistor cost

0.01

0.001

Source: Intel

0.0001

0.00001

Litho Tool Cost($)

Equivalent to printing
one letter in a
Newspaper

0.000001

Source: Intel 0.0000001 ———— . e s
Exp+04 Lo T ; — 68 70 ‘72 ‘74 ‘76 ‘78 '80 '82 '84 '86 '88 90 '92 '94 96 '98 ‘00 '02

1960 1970 1980 1990 2000 2010 P ———

Dissipation in microprocessor ~100 W (>50% wasted in transistor leakage in the 45 nm node)
Computers approaching 10% use of worlwide electricity




Spin currents vs. charge currents

Non-volatility, transport of information without dissipation

Charge
J.=45"r) j.=qv
Spin
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Spins in motion
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Moving charge, kinetic energy
and dissipation

Spin currents are even under time
reversal

Electrons do not need to move
Nonvolatile memory

Possibility to reduce dissipation

J. Shi, et al., Phys. Rev. Lett. 96, 076604 (2006).



Spintronics

Fundamental physics and applications

Moore’s Law I “Beyond” CMOS |
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Spin valves (Overview)

Giant magnetoresistance (GMR), tunnel magnetoresistance (TMR)

Two spin channel model (Mott 1930)
Metallic ferromagnets. Spin-up and spin-down are
two independent families of carriers

Spin splitting
Er — Different density of states at

the Fermi level for spin up and
down carriers

— Different mobility for spin up
and down carriers
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Spin valves (Current technology)

Giant magnetoresistance (GMR), tunnel magnetoresistance (TMR)
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Spin valves (current)

Magnetic Access Random Memory (MRAM)

Source: ST Techmol.
: No need to constantly refresh the information through the $20 Bil

periodic application of an electrical charge. Less leakage.

Start-up routines go faster $15 Bil
Reduced risk of data loss from unexpected power outages
Reduced dissipation

Fast writing/reading

Larger power requirement for writing

Larger memory cell size
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Spin valves (< 5 years)

Magnetic Access Random Memory (MRAM) Current developments

Magnetoresistive effect Device applications
MR ratio at RT
HDD head
AMR effect
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Spin valves (< 5 years)

Magnetic Access Random Memory (MRAM) Current developments

(:)-'spjﬂ_ggg Thermally Assisted Switching (TAS) MRAM CROCU

store -Use temperature-dependence of switching field

heating .
ﬂn“ > Write at elevated temperature
mﬂm : » Store / read at room temperature

«Same basic concept as in Heat Assisted
write Magnetic Recording.
i emperatore *Here heating produced by Joule dissipation
temperature ~200°C around tunnel barrier.
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Spin valves (< 5 years)

Magnetic Access Random Memory (MRAM) Current developments

Benefit from “Above IC” technology

With CMOS technology only: With hybrid CMOS/magnetic: B. Dieny (SPINTEC/CROCUS)
MTJs
| Logic == CMOS memory | Logic

Si Si

-Non-volatility in logic

-Large energy saving

-Fast communication between
logic and memory

-Numerous short vias

-Simpler interconnection paths
-Smaller occupancy on wafer

Non-volatile MTJ
memory element

Simple MOSFET or
CMOS logic component

8 Nov 2010 * ) AN HYMAGINE B.DIENY
= / 14

Study other torque/switching mechanisms (e.g. via electric fields, Rashba field,
muItiferroics, DW, etc) Nature Materials, Vol. 6 Iss. 1 (2007), Miron Nature Materials (2010), etc.

Other companies: Everspin, STT Grandis, Hynix, Toshiba-NEC (DW), Samsung, NVE, Hitachi,
Avalanche, Fujitsu, Spin Transfer Technologies, ..., research labs in Japan, US, etc.




Racetrack memory (5-10 years)

Domain wall motion. Related to twistor/bubble memory

Racetrack memory is an experimental non-volatile memory device under development at IBM
It promises higher density than Lash (similar to HDD) and higher write/read speeds

The "track" is moved at fixed rate (~100 m/s) past the read/write sensor. Bits at different positions on the
"track" would take different times (10 ns/bit) to be accessed by the read/write sensor.

Need for high current density (>108 A/cm?). It appears not to be able to compete with STT-MRAM

Domain walls move slowly through the wires. Microscopic imperfections along the wire slows pin domain
walls

Tunnel
barrier

Racetrack Memory

Magnetic
Domaoins (B4) —. : would be embedded in a chip — > <

Doman woll

- -

See, e.g. Chauppert Nat. Mater. (2006) Patent WO 2006/064022
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RF applications (5-10 years)

Magnetization oscillations driven by spin polarized currents (Katine PRL 2000, Kiselev Nature2003

Damping Promising microwave generators. Radar an telecommunications

/ , Ho Compatible with existing planar technology

Precession

Radiation hard
Tunable via a bias magnetic field or a bias electric current
Low output power (500 nW or less) relatively large linewidth

Poor understanding of high bias torque

‘Free’ layer . . . .
# Spacer Effects of nonlinearity of the oscillators on coupling and phase

‘Fixed' layer .
locking
Source: Slavin, Nat. Nanotech. (2009)
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Spin/Magnetic logics (>5-10 years)

Quantum dot cellular automata Logic based on MTJ
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Spin logics (>5-10 years)

Spin logics with spin currents

Nonlocal spin logics proposals
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Spin Hall Effects and Topological Insulators(>5-10 years)

Pure spin currents

nucleus
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electron

Axel Hoffmann, Argonne National Laboratory, US.



Spin Hall Effects and Topological Insulators (> 10 years)

Pure spin currents
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Quantum spin Hall effect and Topological Insulators. Nondissipative spin currents

Similar to quantum Hall effect Observed experimentally, more than 50 compounds predicted
No magnetic fields applied
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Spin thermoelectronics or spin caloritronics (> 5-10 years)

Pure spin currents

Spin Seebeck effect and magnon dynamics
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Classical computing

Irreversible logic

Boole logic is irreversible

Lo I wm R ey S

S

In any Boole operation there is loss of information

Landauer principle:

“any logically irreversible manipulation of information,
such as the erasure of a bit or the merging of two
computation paths, must be accompanied by a
corresponding entropy increase. ... Each bit of lost
information will lead to the release of an amount kT In 2 of
heat, where k is the Boltzmann constant and T is the
absolute temperature of the circuit”

Power (W)
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Quantum computing (> 10-15 years)

Bits and Qubits

Qubit

A qubit is the analogue to a bit o 0
in a quantum computer ®

A qubit is described by a vector in a space of
continue variables b

A spin qubit can be represented by the two states of a spin % particle

A guantum computer is a system formed by many interacting qubits whose evolution
can be controlled

Computation involves time evolution of the quantum circuit, thus reversible unitary
operations: No dissipation.



Quantum computing (> 10-15 years)

Bits and Qubits

e
T=100 mK Buc (=10 " Tesla)
B (=2 Tesla)

T
1
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back gates magnetized or heterostructure
high-g layer quantum well

Loss, DiVincenzo, (1998)

/

31
P* - Substrate

Kane, Nature (1998)

Marcus (Harvard) and
Kouwenhoven (Delft) groups...

I.__inA)

Lukin (Harvard), Awschalom (UCSB)

Yacoby (Harvard) groups... Morello, Nature (2010)

Molecular Magnets, Wernsdorfer


http://www.gizmag.com/diamonds-boost-quantum-computing-speed/13431/picture/105559/

Summary

1- Current spintronic technologies
GMR/TMR
MRAM

2- To be commercialized (within 5 years)
STT-MRAM

Fundamental understanding of TMR and STT desired, especially at high bias. Need to reduce
writing currents and size to compete with other than SRAM. Further developments on CMOS
integration. Study of other magnetization switching mechanisms.

3- RF components (5 years)
Increase power output. Demonstration of phase-lockin of tens of oscillators needed.
Fundamental understanding of nonlinearities

4- Spin Logics (>5-10 years)
Further material and design developments. Further improvement of nonlocal devices based on
semiconducting and metallic materials. Magnetization switching with pure spin currents. Pure
spin currents generation.

5- Spin Hall effects, Topological Insulators (>5-10 years)
Recently observed experimentally. Of extreme fundamental interest. Very intriguing for
applications. Need focus on materials and device design.

6-Spin Thermoelectronics (>5-10 years)
Recent development. Phenomenology not understood. Possibility of developing
completely new concept for large figure of merit Z.

7- Spin Qubits and Quantum Computing (>10-15 years)
Coupling between more than 2 qubits. Limit decoherence from Nuclei (e.g.in GaAs), quantum
control improvement, error correction, etc. Still not clear cut technology amongst candidates.



