<u>Session 6</u>: *Spintronics and Magneto Electronics* by Sergio Valenzuela, Barcelona

Raporteur: Christian Pithan, FZJ – PGI, Jülich

Comprehensive overview on spingtronics related to

- 1.) Current technologies and developments (GMR, TMR, MRAM)
- 2.) New fundamental physical phenomena and potentially emerging applications (Transfer between pure scientific and application side is an important issue)

Charge transport vs. spin dynamics

Spintronics opens possibilities for nonvolatile and low dissipation memory devices (Spins do not need to be in motion for information transport)

Vision based on experimental and theoretical observations of the recent past Pure spin currents without charge transfer in integrated circuits and quantum manipulation / coupling of spin states.

- At present: controlled by magnetic field or spin-polarized charge currents
- Future: controlled by electric field and no charge currents

Giant Magnetoresistance (GMR), Tunnel Magnetoresistance (TMR)

- Parallel allignment \rightarrow transmission, Antiparallel allignment \rightarrow no transmission
- Commercialization (Grünberg -patent): Magnetic sensors and data storage
- Magnetic Access Random Memory (MRAM)
 - At present: **Toogle RAM** with low leakage, reduced dissipation, fast writing/ reading but larger power requirements for writing, cell size to large

<u>Session 6</u>: *Spintronics and Magneto Electronics* by Sergio Valenzuela, Barcelona

Raporteur: Christian Pithan, FZJ – PGI, Jülich

Magnetic Access Random Memory (MRAM)

- Curr. development: Spin transfer torque RAM (lithographically refined domains, reduced cell size)
 - Heat assisted switching RAM (TAS-MRAM) (writing at elevated temperatures)
 - Other torque/switching mechanisms (via electrical field, multiferroics ...)

Race track memory concept

- Proposed by IBM
- Domain structure along a ferromagnetic line used to store information in a 3 dim. arrangement

Intriguing new physical discoveries from which practical possibilities could emerge:

- RF-applications, spin logics, spin hall effect, spin Seebeck effect, Quantum computing ...
- Many encouring proposals, developments or reports from the scientific literature
- Often still new fundamental physics and a lot of new scientific work needed
- Real application sometimes unclear (e.g. spin Seebeck effect)

Discussion with the discussant (Paolo Lugli) and the auditorium

- Level of maturity and impact in society ...
- Role of contacts and interconnects in spin based devices ...
- Reliability and stability issues ...
- Role of the superparamagnetic limit in the evolution of MRAM and spintronic in general ...
- Role of molecular spintronics or molecular magnets (example of Ferritin molecule) ...