

Analog/Mixed-Signal (AMS) Design

Helmut Graeb

Institute for Electronic Design Automation Prof. Ulf Schlichtmann Technische Universitaet Muenchen

Overview

- Introduction
- From device to circuit
- Models, simulation, design
- Variability (manufacture, operation)
- Reliability (aging)
- ITRS analog/mixed-signal design technology trends
- Conclusion

Microelectronics – Progress

- Progress in design technology necessary: electronic design automation (EDA)
 - Transform technological progress of ever smaller devices into products
 - Time to market
 - Design quality

Progress based on

Process technology

- Ever smaller devices
- High production yield
- High reliability (lifetime of chip)
- System heterogeneity
 - System on Chip (SoC): memory (RAM), processor (CPU), applicationspecific integrated circuit (ASIC), digital signal processors (DSP), interface (I/O), bus
 - Analog, digital, RF, hardware, software, MEMS
- Design technology
 - Complex component libraries (bottom-up)
 - System synthesis (top-down)

Analog/Mixed-Signal (AMS) Circuits

AMS

GSM base band chip "E-Gold+" Infineon Technologies AG (1990ies) AMS: on 75% of ICs 20% of chip area 40% of design effort 50% of redesigns

(EDA Weekly, 21 March 2005)

Analog/Mixed-Signal (AMS) Circuits

are of Ame parts in overall enip design enort

International Roadmap for Semiconductors 2007 http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Design.pdf

From Device To Circuit

MOS Transistor ("Device")

. . .

works as voltage-controlled current source ...

$$i_{DS} = K \cdot \frac{W}{L} \cdot (u_{GS} - U_{th})^2 \cdot (1 + \lambda \cdot u_{DS})$$

if
$$u_{DS} - (u_{GS} - U_{th}) \ge U_{satmin}$$

 $u_{GS} - U_{th} \ge 0$
 $u_{DS} \ge 0$

MOS Transistor

Current mirror

provides a fixed ratio between two drainsource currents ...

... if
$$\begin{aligned} &|u_{GS}-U_{th1/2}|\geq U_{GSmin}\\ &|u_{DS2}-u_{DS1}|\leq \Delta U_{DSmax} \end{aligned}$$

MOS Transistor Pairs

- 203 alternatives
- 8 of which have a design relevant function

2-transistor current mirror

level shifter

differential pair

cross pair

MOS Transistor Groups

CMOS folded cascode operational amplifier

CMOS transconductance operational amplifier (OTA)

AMS Circuits – Examples

AMS Circuits – Examples

• Phase locked loop (PLL)

PLL on Transistor Level

Models, Simulation, Design

AMS Modeling

$$\dot{u} + \frac{1}{RC}u + \frac{I_S}{C}\left(\exp(\frac{u}{U_T}) - 1\right) - \frac{1}{C}i_0 = 0$$

ENTITY ota is GENERIC (gdm:real;Cin:real;CT:real;Cout:real;Rout:real;); PORT (terminal Tplus, Tminus, Tout, Tvdd, Tvss , Tibias: electrical); END ENTITY ota; architecture behavioural_simple of ota is Structural modeling with lumped elements

- transistor/circuit netlist
- block diagram

Behavioral modeling e.g.

- nonlinear differential equations
- behavior description code (VHDL, ...)

Hierarchical modeling

- Abstraction of physical effects
- Switch between structural/behavioral modeling

. . .

AMS Circuit Simulation

- Numerical solution of differential algebraic equations (DAEs)
- Eventually, of partial differential equations (PDEs)
- Modified nodal analysis:
- DC (operating point) analysis
- AC (small-signal)
- TR (large-signal transient) analysis
- HB, PSS, ...
- Map V on performance values f

V constant

- *V* depending on frequency
- V depending on time

AMS Circuit Simulation

- Performances $\mathbf{f} \in \mathbb{R}^{n_f}$, sizing constraints
 - Gain, bandwidth, matching, ... $\mathbf{c}(\mathbf{x}_d) \geq \mathbf{0}$
 - Simulator output
- Parameters $\mathbf{x} \in \mathbb{R}^{n_x}$
 - Design parameters (transistor widths, ...) $\mathbf{x}_d \in \mathbb{R}^{n_{xd}}$
 - Statistical parameters (threshold voltage, oxide thickness, ...) $\mathbf{x}_s \in \mathbb{R}^{n_{xs}}$
 - Range parameters (supply voltage, temperature, ...) $\mathbf{x}_r \in \mathbb{R}^{n_{xr}}$
 - Simulator input
- Simulation $\mathbf{x} \mapsto \mathbf{f}$
 - Netlist, simulation bench, process technology
 - Abstraction from the physical level

AMS Design Steps

Variability (Manufacture, Operation)

Manufacturing Variability (Source: ITRS 2009)

Process Variation Modeling on Circuit Level

- Statistical distribution of transistor parameters
 - e.g. variation of channel length/width ΔL , ΔW , oxide thickness t_{ox} , channel doping N_n , N_p , charge mobility μ_n , μ_P , junction capacitance C_{jn} , C_{jp} , junction depth x_{jn} , x_{jp} , series resistance R_n , R_p [Müller-Liebler, PASTA, Int. J. Circuit Theory and Appl., 1995]
 - e.g. ΔL , ΔW , oxide capacitance C_{ox} , flat band voltage V_{fb} [Hocevar, Cox, Yang, Parametric Optimization for MOS, IEEE Trans. CAD. 1988]
 - oxide thickness t_{ox} , threshold voltage V_{thn} , V_{thp} (global + lokal), charge mobility μ_n , μ_P (global + lokal), square resistance R_{sq} [MunEDA]
- Yield: percentage/portion of manufactured ICs that pass the production test

Statistical Parameter Distribution

$$pdf(\mathbf{x}_s) = \frac{1}{\sqrt{2\pi}^{n_{xs}}\sqrt{\det \mathbf{C}}} \exp(-\frac{1}{2}\beta^2(\mathbf{x}_s))$$
$$\beta^2(\mathbf{x}_s) = (\mathbf{x}_s - \mathbf{x}_{s,0})^T \mathbf{C}^{-1}(\mathbf{x}_s - \mathbf{x}_{s,0})$$

- Transformation in normal distribution of $\mathbf{x}_s \in \mathcal{R}^{n_{xs}}$ with
 - mean vector $\mathbf{x}_{s,0}$
 - covariance matrix ${f C}$

Operating Range, Performance Specification

- Operating range
 - Bounds for environmental parameters $x_{r,i} \ge x_{r,L,i}, i = 1, \dots, 2n_{xr}$ $(x \le x_U \Leftrightarrow -x \ge -x_U)$
 - Simulator input

- Performance specification
 - Bounds for performances $f_i \ge f_{L,i}, i = 1, \dots, 2n_f$
 - Simulator output

Yield

- Gaussian bell cut by specs
- Integral of pdf over acceptance region
- Estimation by Monte-Carlo analysis
- Approximation by Worst-Case Distances

$$Y = \int \dots \int_{A_s} p d\mathbf{f}(\mathbf{x}_s) d\mathbf{x}_s$$
$$A_s = \left\{ \mathbf{x}_s \mid \forall_{\mathbf{x}_r \ge \mathbf{x}_{r,L}} \mathbf{f}_L \le \mathbf{f}(\mathbf{x}_d, \mathbf{x}_s, \mathbf{x}_r) \le \mathbf{f}_U \right\}$$

Yield Budget (Source: ITRS 2009)

"Design for manufacturability"

Yield Optimization – Example

Performance	Specification	Design 1		Design 2	
Gain	\geq 65dB	76dB	(2.5 o)	76dB	(4.2σ)
Transit frequency	$\prime \geq 30 MHz$	67MHz	(7.7σ)	58MHz	(4.5σ)
Phase margin	$\geq 60^{\circ}$	68°	(1.8 o)	71°	(3.9 0)
Slew rate	$\geq 32V/\mu s$	67V/μs	(6.3 σ)	58V/μs	(3.9 o)
DC power	\leq 3.5 mW	2.6µW	(1.1σ)	2.3μW	(4.2 o)
	Yield		82.9%	9	9.99%

- K. Antreich and J. Eckmueller and H. Graeb and M. Pronath and F. Schenkel and R. Schwencker and S. Zizala WiCkeD: Analog Circuit Synthesis Incorporating Mismatch, IEEE CICC 2000
- H. Graeb: Analog Design Centering and Sizing, Springer Verlag 2007

Trade-off Design – Example

Reliability (Aging)

Aging Effects

- Negative Bias Temperature Instability (NBTI)
- Si-H bonds break at Si/SiO₂ interface

- Hot Carrier Injection (HCI)
- Electron-Hole pairs break due to collisions with hot channel carriers (Impact Ionization)
- Shift threshold voltage and transconductance

Variability over Lifetime

Lifetime Yield

Analog Sizing for Reliability – Flow

• Xin Pan, H. Graeb: Lifetime Yield Optimization of Analog Circuits Considering Process Variations and Parameter Degradations, in: Advances in Analog Circuits, InTech - Open Access publisher, to appear 2011

Analog Sizing for Reliability – Example

• Miller OpAmp, 180nm, 1.7V

	yield-optimal		reliability-optimal		
	fresh	10 years	10 years fresh		
Gain≥80dB	4.0	3.9	3.9	3.9	
Slew Rate $\geq 3V/\mu s$	4.2	1.9	3.4	5.8	
$\text{GBW} \geq 2\text{MHz}$	5.8	5.7	5.8	5.9	
Phase Margin≤ 120 <i>deg</i>	5.2	4.3	5.1	5.9	
Power $\leq 2mW$	5.9	5.8	6.2	6.6	
CMRR≥80dB	3.4	2.2	3.3	4.2	
Relative Area	10	00%	107%		
Lifetime Yield	99.96%	94.50 %	99.93%	99.99%	

ITRS 2010: AMS Design Technology Trends and Challenges

- Interactive and semiautomatic AMS design
- Parametric models and simulation of complex AMS blocks
- Standardized modeling and analysis of physical effects and complex performance features
- Appreciation of simulation as THE abstraction from the physical layer in AMS design
- Appreciation of simulation as THE interface for design automation in AMS design
- Provide simulators with sensitivity analysis capabilities
- Education of AMS design engineers and EDA tool developers
- AMSRF design tools are not for a flow but for a class of design problems

ITRS 2010: AMS Design Technology Trends and Challenges

- Interactive design aids for the generation and selection of circuit structures
- Interactive design aids for place & route
- Interactive design for yield and reliability
- Discrete optimization (e.g. layout fingers, manufacturing grid)
- Closer interaction between structural synthesis and layout synthesis
- Design space exploration
- Enhanced simulation speed

Conclusion

New device technologies require

- Models for all types of circuit simulation and analysis
- Circuit techniques with basic building groups (e.g. current mirror)
- Sufficient circuit manufacturing yield
- Sufficient circuit lifetime
- New design technologies