

Nanoelectronics Trends for the Next Decade

January, 2011

Dr. Jeffrey Welser Director, SRC Nanoelectronics Initiative

Presentation Sources:

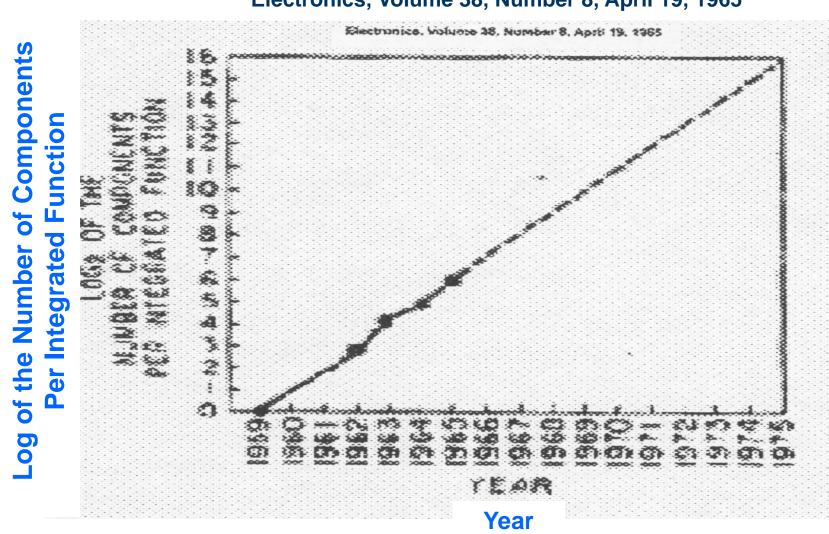
Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook *Chapter 8. Applications: Nanoelectronics and Nanomagnetics* (J. Welser, S. Wolf, P. Avouris, T. Theis)

- Full Report to be published (Springer, Boston and Berlin, 2010)
- PDF Version available online: http://www.wtec.org/nano2/

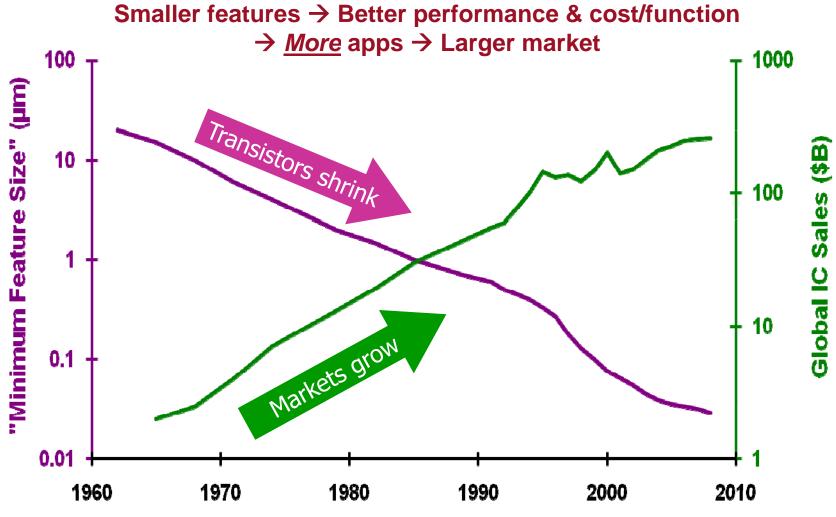
Semiconductor Research Corporation (SRC) Nanoelectronics Research Initiative http://nri.src.org

Additional References:

International Technology Roadmap for Semiconductors (ITRS)


Emerging Research Devices (ERD) and Emerging Research Materials (ERM) Chapters

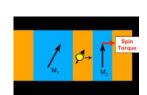
http://www.itrs.net/Links/2010ITRS/Home2010.htm

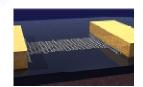

Electronics, Volume 38, Number 8, April 19, 1965

Nanoelectronics Most Visible Impact Scaling Drives the Semiconductor Industry

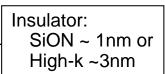
Advances in Last Ten Years: *From Science to Product*

> Science/Engineering Level:

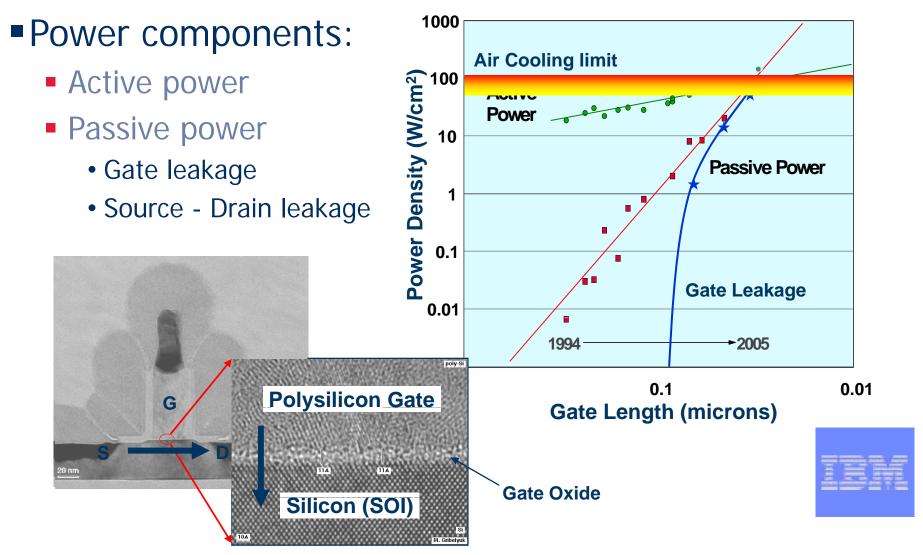

- Expansion of Carbon Electronics: (Re-)discovery of graphene; advances in nanotube fabrication and selection
- Emergence of Spintronics:
 - Demonstration of Spin Torque switching
 - Discovery of magnetoelectric / multiferroic materials
 - Discovery of the Spin Hall Effect
 - Demonstrations of spin injection and readout from semiconductors
- Advances in resistive memory: Phase-Change, metal oxides
- Fundamental understanding of semiconductor nanowire growth


> Product Level:

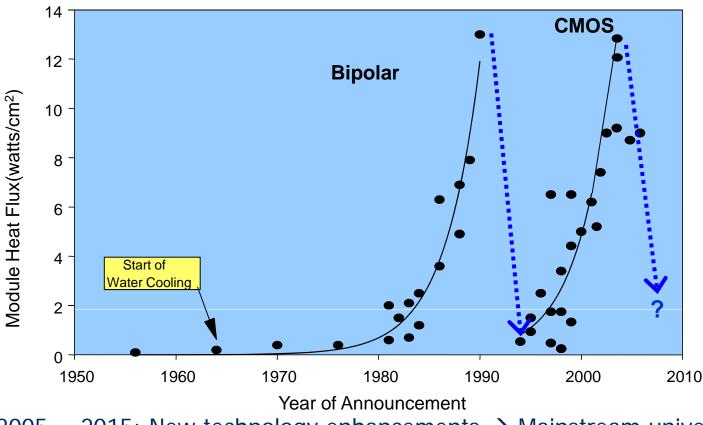
- CMOS and FLASH scaled down to ~30nm
- Magnetic Tunnel Junctions (MTJs)
 - Read Heads for Magnetic Recording; Magnetic RAM
- Phase Change High Density Memory


➤ Impact: Exponential increase in the capability and mobility of electronic devices:

A cellphone is now a computer, internet access device, stereo, video camera, game machine, GPS, etc.



Future Scaling: Power is <u>THE</u> Issue *Must find a lower energy device*



Has This Ever Happened Before?

- 2005 ~ 2015: New technology enhancements → Mainstream university and industry Research
 - Continued CMOS shrinking, low-power FET devices, multi-core chips, 3D packaging, new memory devices, etc.
 - > 2015? : New device technology → NRI Research

Nanoelectronics Research Initiative *Mission Statement*

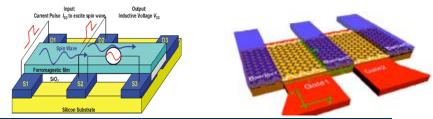
NRI Mission: Demonstrate novel computing devices capable of replacing the CMOS FET as a logic switch in the 2020 timeframe.

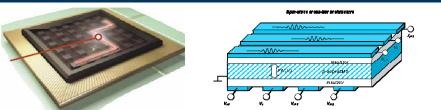
- These devices should show significant advantage over ultimate FETs in power, performance, density, and/or cost to enable the semiconductor industry to extend the historical cost and performance trends for information technology.
- To meet these goals, NRI pursues five research vectors, focused on discovering and demonstrating new devices and circuit elements for doing computation.
- Finally, it is desirable that these technologies be capable of integrating with CMOS, to allow exploitation of their potentially complementary functionality in heterogeneous systems and to enable a smooth transition to a new scaling path.

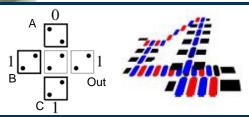
Beyond CMOS Logic: What to look for?

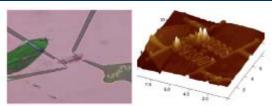
- To beat the power problem requires:
 - A device with a lower energy, room temperature switching mechanism or
 - A system that operates out of equilibrium or recovers operation energy as part of the logic computation
 - Required characteristics:
 - Scalability
 - Performance
 - Energy efficiency
 - Gain
 - Operational reliability
 - Room temp. operation
 - Preferred approach:
 - CMOS process compatibility
 - CMOS architectural compatibility

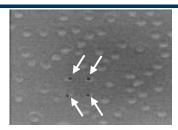
Alternative state variables


- Spin–electron, nuclear, photon
- Phase
- Quantum state
- Magnetic flux quanta
- Mechanical deformation
- Dipole orientation
- Molecular state

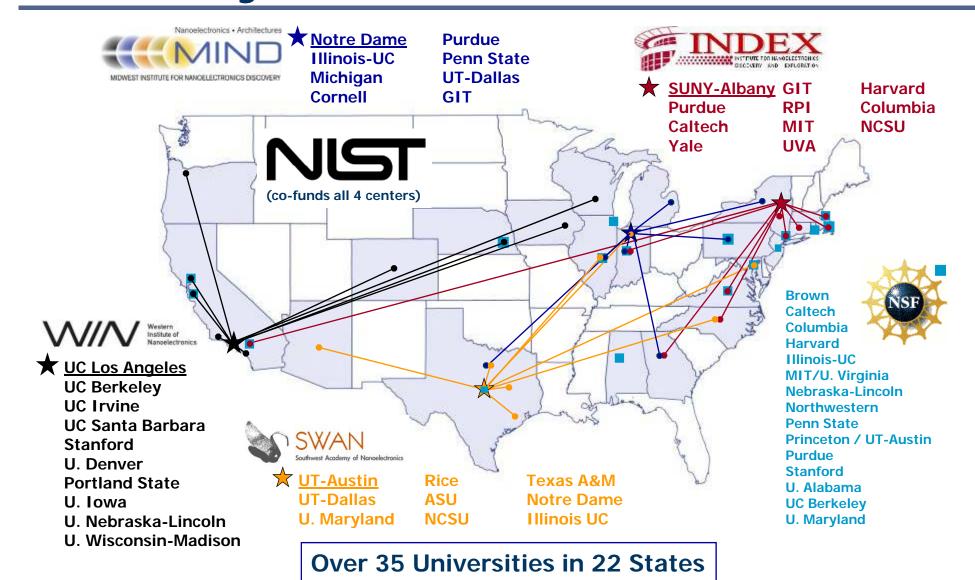

NRI Primary Research Vectors


NEW DEVICE Device with alternative state vector


NEW WAYS TO CONNECT DEVICES Non-charge data transfer


NEW METHODS FOR COMPUTATION Non-equilibrium systems

NEW METHODS TO MANAGE HEAT Nanoscale phonon engineering

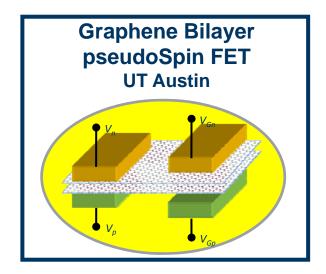

NEW METHODS OF FABRICATION Directed self-assembly devices

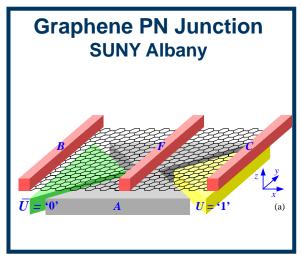
المحرو

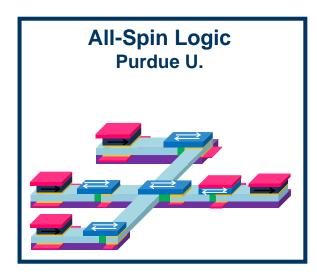
NRI Funded Universities Finding the Next Switch

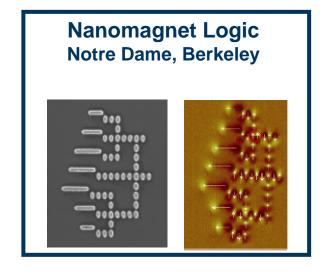
NRI Research Centers In Partnership with NIST

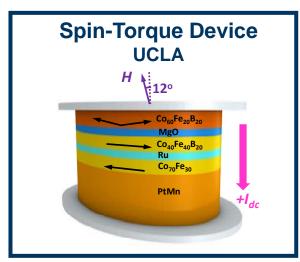
 Leveraging industry, university, and both state & fed government funds, and driving university nanoelectronics infrastructure

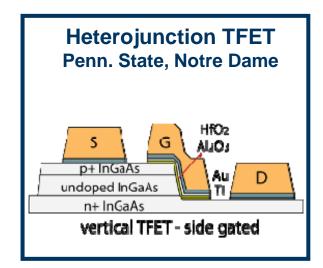


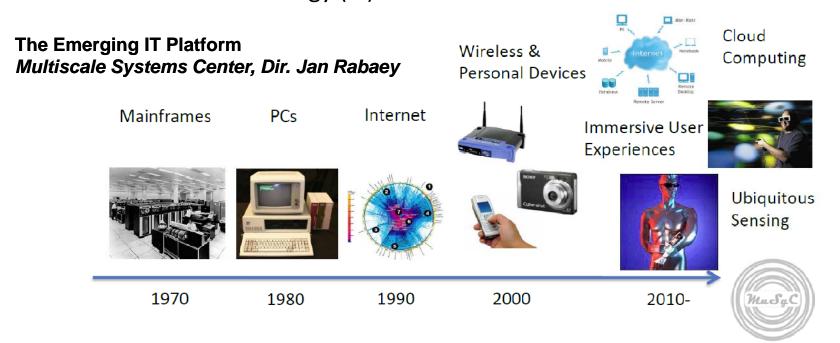

WIN Western Institute of Nanoelectronics	INDEX Institute for Nanoelectronics Discovery & Exploration	SWAN SouthWest Academy for Nanoelectronics	MIND Midwest Institute for Nanoelectronics Discovery
UCLA, UCSB, UCB, UC-Irvine, Stanford, U Denver, Iowa, Portland State, U Nebraska, U Wisconsin	SUNY-Albany, GIT, RPI, Harvard, MIT, Purdue, Yale, Columbia, Caltech, NCSU, UVA	UT-Austin, UT-Dallas, TX A&M, Rice, ASU, Notre Dame, Maryland, NCSU, Illinois-UC	Notre Dame, Purdue, Illinois-UC, Penn State, Michigan, UT-Dallas, Cornell, GIT
Spin devices Spin circuits Benchmarks & metrics Spin Metrology	Novel state-variable devices Fabrication & Self-assembly Modeling & Architecture Theory & Simulation Roadmap Metrology	Logic devices with new state-variables Materials & structures Nanoscale thermal management Interconnect & Arch Nanoscale characterization	Graphene devices: Thermal, Tunnel, & Spin Interband Tunnel Devices NanoMagnetic Logic Non equilibrium Systems Model / Measurement Nanoarchitecture




Post CMOS Device Examples



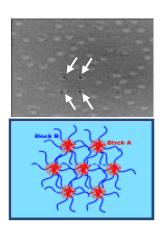


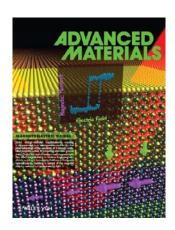


Vision Changes in Last Ten Years: From How to Build → What to Build

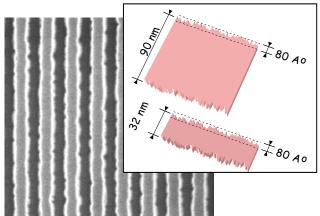
- ➤ Barrier to future scaling changing from just "how do we make them smaller?" to "how do we reduce their power to make them usable?"
 - Shift from breaking below 100nm Si CMOS to breaking below 10nm
- ➤ Discovery of myriad new materials with new physics and properties driving new ideas for device functionality
- > Shift from single device focus to circuits and architecture integration
- ➤ Increased emphasis on other application areas, beyond logic and memory for Information Technology (IT) infrastructure

Vision for the Next Ten Years: *Major Directions*


- ➤ Increased focus on utilizing new nanoscale physics for device functionality, rather than just fighting it to continue current device scaling
 - Alternate state variables for logic & memory
- > Increased focus on architecture and alternative ways to do computation
 - Dealing with lower speeds for lower power: Multi-bit logic? Increased parallelism?
 - Dealing with increased variability: Analog / Statistical / "Almost Right" computation?
 - Tighter integration and blurring between memory and logic: Non-volatile transistors, memristors, memory-in-logic, reconfigurable logic, FPGAs
- ➤ Increased focus on spin, magnetics, Magnetic Tunnel Junctions especially spin torque based structures
 - STT-RAM, Nano-oscillators, Magnetic Sensors, Spin Torque MTJ Logic, magnetic cellular automata, reconfigurable arrays
- > Increased focus on Carbon based devices
 - Exploiting physics of graphene, carbon nanotubes, fullerenes, defects in diamond
- ➤ Increased focus on non-IT applications future driver of the industry
 - Energy, healthcare, sensors everywhere, always-on connectivity, mobile devices



Goals for 2020: Fabrication

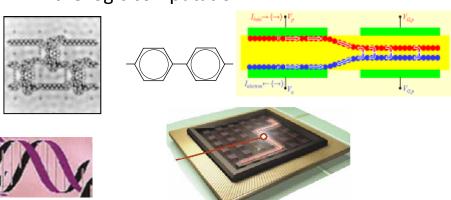


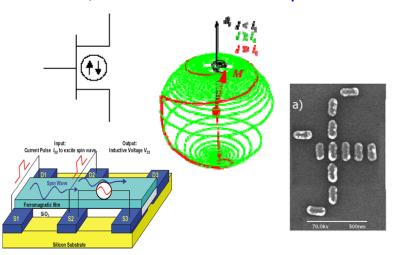
- Achieve 3D near-atomic-level control of reduced-dimensional materials
 - Includes mono-layer growth, nano wire/tube/dot growth and placement, custom materials (e.g. complex metal oxides, multiferroics), and meta-materials (e.g. ferroelectric lattice with embedded ferromagnetic particles)

- Combine lithography and self-assembly to pattern semi-arbitrary structures down to 1nm precision
 - Requires both top-down control of litho for ~10nm-scale arbitrary structures, and bottoms-up control of self-assembly of 1nm-scale regular structures, plus improved inter-layer registration

- > Requires continued advances in:
 - Tools for growth, etching and placement at near-atomic levels
 - Chemistries for self-assembly
 - Metrology tools, including in-situ, dynamic characterization & in-line, non-invasive monitoring
 - Predictive modeling of materials and interfaces from atomic level up

Goals for 2020: *Devices*

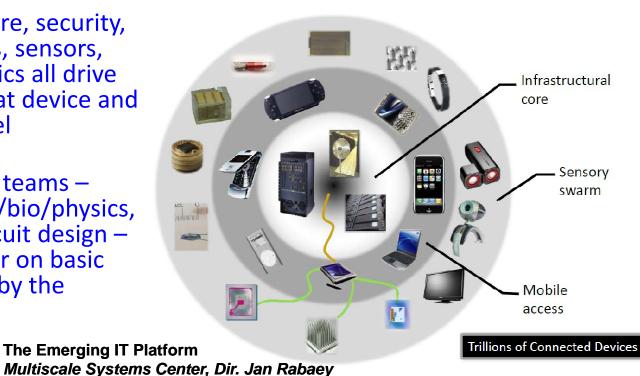



- Discover devices for logic and memory that operate with greatly reduced energy dissipation: 10,000kT → ~10kT
 - Power density is the primary limiter of future scaling. Requires:

A device with a lower energy, room temperature switching mechanism and/or

A system that operates out of equilibrium or recovers operation energy as part of the logic computation

- Exploit spin for memory, logic, and new functionality
 - Spin and nano-magnetics offer unique attributes (non-volatility, precession, low power, spin-spin interaction) already utilized in memory and storage
 - New materials and nano-scale control should enable logic, solid state quantum computing, oscillators, sensors, and other functionality


- > Challenges:
 - Finding appropriate architectures and state variables (spin, charge, collective effects, etc.)
 - Maintaining speed, noise robustness, signal strength, gain/drive

Goals for 2020: *Architectures*

- Integrate architecture and nanoscale device research for unique computation functionality
- ➤ Increase focus on emerging, non-IT applications
 - Previous research has focused on the device first, but most challenges are in the large-scale integration of any new device
 - Energy, healthcare, security, communications, sensors, flexible electronics all drive different needs at device and architecture level
 - Drives need for interdisciplinary teams – materials, chem/bio/physics, engineering, circuit design – working together on basic research driven by the application

International Perspective Insights from the EU and Asia Workshops

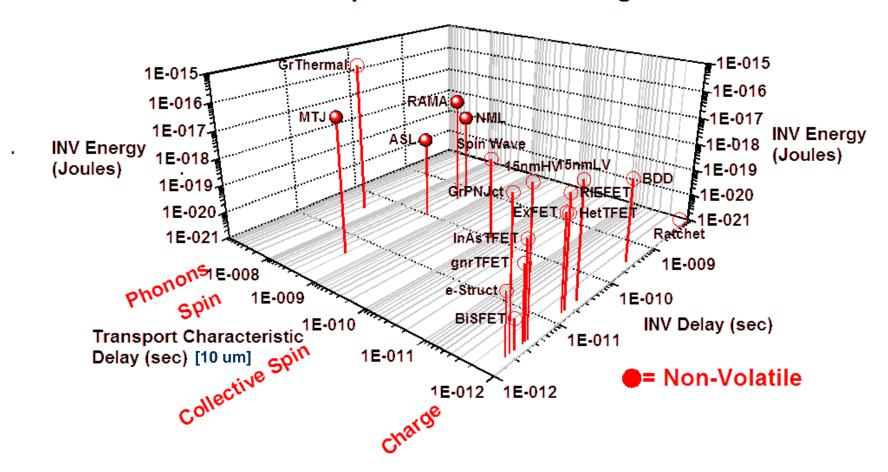
- ➤ International workshops reinforced the primary goals, and added additional emphasis in complementary areas
 - Potential to work together on common themes and build off each other's work
- > EU Workshop, Hamburg, Germany (C. Sotomayor Torres, J. Welser)
 - Increased emphasis on "More-than-Moore" applications of nanoelectronics, particularly in analog devices, to enhance functionality
 - Strong focus on basic science research to discover new phenomena
- ➤ Japan-Korea-Taiwan Workshop, Tsukuba, Japan (M.-H. Hong, S. Wolf)
 - Also emphasized "More-than-Moore", but with more focus on exploring novel state variables and materials (e.g. topological insulators, orbitronics, superconductivity, etc.)
 - Strong interest in quantum computing
- > Australia-China-India-Singapore, Singapore (A. Wee, S. Wolf)
 - Strong emphasis on full quantum information systems, for computation and communication
 - Increased interest in molecular electronics, as well as heterogeneous materials integration
- ➤ All groups emphasized the need for interdisciplinary teaming, focusing on the application as the driver, and continued strong investment in both research and infrastructure for nanoelectronics work

NRI Benchmarking New Switch Technologies General Observations

Information Token
Spin waves
Spin (Single / Few)
Magnetic Field (Collective Spin)
PseudoSpin
Heat
Excitons
Plasmons
Charge

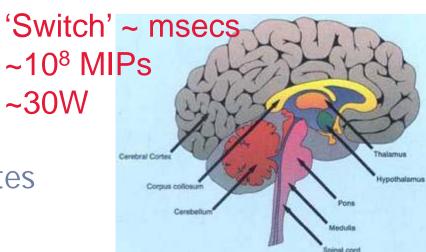
Transport Mechanism
Drift
Diffusion
Ballistic Transport
Spin Conduction
Electromagnetic Waves
Simple Conduction Band Transport
EM quasi-particle in surface plasmon-

polariton mode


- Maturing of devices over the past year;
 more understanding of intrinsic responses
- Substantial clustering of data across multiple tokens
- Token transfer (interconnect) becoming even more important
 - Can influence relative device value
- NRI Architecture results make clear the emerging need for parallelism
 - Important for teams to add circuit designers and to consider non-Von Neumann and/or application-specific architectures
 - Positive Sign: Schematics and SPICE now regularly appear in PI reports
- No clear "winner" but clearer understanding of device capability has emerged
 - Primary advantages: Power, Area; Primary challenges: Speed
- Increased focus on circuit implementations to take advantage of novel device attributes (e.g. non-volatility, complex functions) required
 - Will continue to refine benchmark process to include relevant parameters not eliminating ideas based solely on our current CMOS-based metrics

Invited Paper: "Device and Architecture Outlook for Beyond CMOS Switches," K. Bernstein, R.K. Cavin, W. Porod, A. Seabaugh, and J. Welser, *Proceedings of the IEEE Special Issue - Nanoelectronics Research: Beyond CMOS Information Processing*, Vol. 98, No. 12, December 2010.

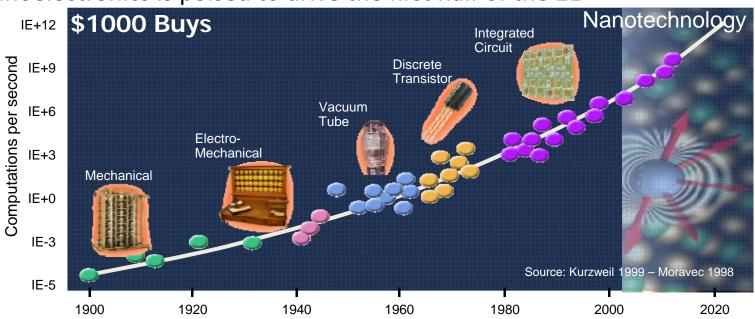
Intrinsic Switch / Transport Venue Composite Benchmarking



Computing with Alternate State Variables

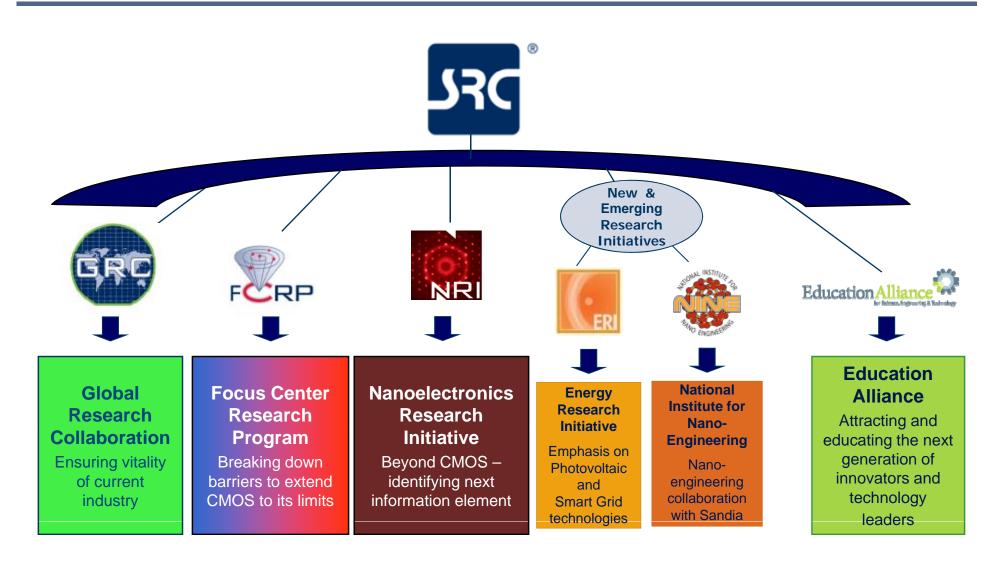
- Many different device ideas being considered some 'likely' attributes compared to CMOS:
 - Slower
 - Denser / 3D
 - Local interconnect focused
 - Uniform arrays / sea-of-gates
 - Variability still an issue

Proof of concept?


- Architecture / System Question:
 - How to get high computation throughput with these attributes?

Nanoelectronics Impact on Society: *To Continue the Benefits, Continue the Curve*

- > Nanoelectronics plays a major role in tackling most of society's challenges
 - High Performance Computing: behind every major scientific advance
 - Energy: low energy devices, sensors, "smart" appliances & energy grid
 - Bio / Health: in vivo sensors, health monitoring, drug delivery, drug discovery
- ➤ Increased proliferation of mobile devices, sensors, and always-on connectivity will alter how we interact with each other and the planet
 - More remote interactions, workforce globalization, remote delivery of services
 - Continued focus on environmental & societal impact of embedded devices
- ➤ Microelectronics was THE economic driver for the last half of the 20th century Nanoelectronics is poised to drive the first half of the 21st



Backups

Semiconductor Research Corporation A Family of Distinct, Related Program Entities

Nanoelectronics Research Initiative Origins

- 2001-2004: Defining Research Needs
 - ITRS-Emerging Research Device Technical Working Group
 - NSF-SRC Ind-Academia-Govt "Silicon Nanoelectronics and Beyond" Workshops
 - SIA Technology Strategy Committee workshops
 - ➤ Defined 13 Research Vectors for finding the "next switch"
 - SIA Board passes resolution for formation of NRI
- Current Member Companies:

- Sep 2005: First NRI and NRI-NSF Solicitations released
- Jan 2006: Research Programs started

■ Sep 2007: NIST joins NRI

- NRI partnership model highlighted in as sidebar in the National Nanotechnology Initiative (NNI) Strategic Plan (NNCO, 1/08)
 - Also called out in the House Appropriation Committee report (FY2008)
 - NRI showcased in Small Times' annual nanotechnology university issue