

Recap					
Digital: Noise Variance Defects Energy Compactness					
Analog:					
Signal transit delays Charging/discharging delays Noise					
Linearity Power Gain Parasitics	MEMS has its own additional set arising from 3D and mechanical properties and their interactions with others				
Tiwari_05_Lausanne.pptx	10				

SWOT					
	Strength	Weakness	Opportunity	Threat	
Graphene	Electrostatics, ideal mobility	Charge outside graphene, Resistance to dimensionality, No BGap	3D integration, Thz nonlinearities, Broad λ photoabsorption	Contact R, Reproducibility	
Nanotubes	Electrostatics, high mobility	Variable bandgap, metal & semiconductor	Conductiivty, mechanical strength	Contact R, variability, no substrate	
Tunnel transistor	Only works at small spacing	Tunneling is size dependent, high C	High current	Variability, Contact density	
Mott transistor	Insulator to conduction transition	Poor mobility	New principle, size independence	Contact R, region transitions	
BISFET	Potential low energy	Coherence and negative R	New principle	RT, variability,	
Nanowires	Electrostatics	Surfaces	New fabrication techniques	Contact R, Variability	
III-V's	Bulk mobility	Surface states	New materials	Variability, Poor inversion,	
Topological Insulators	Surface conduction, bulk insulation	Low T, Small bandgap materials	New physical mechanisms	Small bandgap, low currents, Low T	
Electrochem Memory	Atomic scale cond path	Stochasticity, interfaces, energy	Simple structure	Randomness, high field traps	
Electromechanical	Mechanics, zero off Curr	Size, cycling	Configurability, memory, dynamic	Stiction, reproducibility,	
Spin-Semicond	No charge movement	Coherence lengths, temp	Less soft errors	Not RT, too much energy in conversions, loss	
Spin transfer, magnetics	Speed,	Current, integration	Non-volatile, soft error immunity	Density, robustness in large # of thin films	
Tiwari_05_Lausanne.pptx 11					

New Technology Challenges

When the answer to improvement in a subset of properties is negative in a fundamental form at the lowest strata, the conclusion is easy.

When it passes that test, it is much harder.

The Challenge is that if the system use is of many components interacting together Global Optimization versus Local Optimization under system constraints is a hard problem that requires a thorough design incorporating the abstractions.

Example: In late 70's, IBM stayed with bipolar because CMOS was too slow. The answer under power constraints was in

architecture (similar to the multicore today).

So, system-scale design very critical.

Today: Look at ARM versus Intel. There are x10-100 more ARM processors in the world