Nanowires for logic devices. From Si Towards III-Vs

Presenter: Heike Riel – IBM Zurich

Discussant: Isabelle Ferain, Tyndall

Rapporteur: Androula Nassiopoulou, NCSR D-IMFI

1. Scaling limitations of the MOSFET

- L is reduced: Reduced charge control by gate
- d_{ox} is decreased: Increase in gate leakage
- Shallow junctions: finite number of dopants: device variability
- V_T shift, increased inverse subthreshold slope $(S_{min} = 60 \text{mV/dec})$

2. Power Challenge

Power per chip increases by scaling down

Alternative Architectures

Optimum gate control by changing gate architecture. Roadmap:

Planar FET FinFET NW FET

Planar vs. NW FET

Improved scaling and better inverse sub-threshold slope

3. Si NW FET

Using the top – down approach:

- Sub 10nm NWs reliably produced.
- H₂ annealing and oxidation thinning leads
- to reduced LER, thus permitting for
- high performance GAA FET, which shows:
- Significantly improved gating behavior
- ~ 2.5 x L_{eff} benefit at constant short channel effects

Conclusion: GAA FET is expected to be the ultimately scaled device

4. Need to reduce Power Consumption

$$P_{dynamic} \sim V^3$$

Need to reduce V further

Steep Sub-threshold slope switch

Steep turn – on characteristics essential for low – power devices

Tunnel FET is the most promising small swing switch for V_{dd} scaling

S<60mV/dec possible (principle of operation)</p>

Disadvantage: Ion depends on tunneling probability

5. Performance achieved with Si T-FET

 S_{min} < 60mV/dec achieved in 2008 (SOI TFET, strained Ge – OI TFET)

S_{min} depends on voltage

Vertical Si NW TFET

Small diameter: Better electrostatics, more efficient dopant segregation

Benchmarking of published Si TFET performance

- Not all in one device
- Point slope does not help

Further optimization of Tunnel FETs

Material optimization

III-V Heterostructure NWs

Different TFET devices

- •III-V planar homojunction TFET
- •III-V planar heterojunction TFET
- •InAs/Si NW heterostructure tunnel TFET

Benchmarking

- Top-down GAA SiNW FET
 The ultimate scaled FET
- T-FET: Best candidate for steep slope switch
- All-Si T-FET: limited by bandgap
- III-V heterostructure T-FET: Best option

Questions – responses

- Good control of NW structural characteristics, size etc is possible
- III-V NWs on Si: Due to the small contact area, mismatch problem is overcome
- Growth of III-V NWs on Si easy, controllable

Main Challenges of vertical NW devices

- Contacting
- Device addressing
- Diameter variability

