

Discussion on Nanowires (Session 5)

Speaker: Heike Riel, IBM Discussant: Isabelle Ferain, Tyndall National Institute Rapporteur: Androula Nassiopoulou - National Centre for Scientific Research "Demokritos"

www.tyndall.ie

- 1. Which driving forces will govern the future of nano-wires?
 - Contacts and dopant engineering?
- 2. How do we address reproducibility issues of nano-wires characteristics from device to device, wafer to wafer and from batch to batch?
 - Is the top-down approach the most relevant one for future work ito reproducibility?
- 3. How to make novel nano-wire devices "attachable" to more conventional devices on silicon chips?

- 1. T-FET's scalability: SS vs. Junction abruptness instead of SS vs. L_G
- 2. Below-60 mV/dec SS: how do designers cope with the small voltage window?

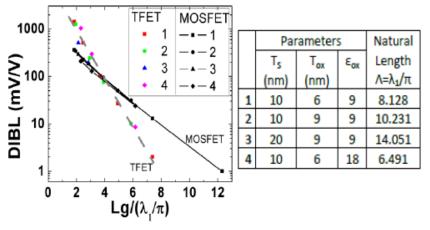


Fig. 5 Scalability comparison of TFET vs MOSFET: MOSFET follows a universal scaling curve. TFET shows superior short channel effect when L_g > 4x λ_1/π . However, short channel effect degrades faster in TFET when L_g < 4x λ_1/π .

L. Liu and S. Datta. Investigation of the scalability of ultra thin body (UTB) double gate tunnel FET using physics based 2D analytical model. In: Proceedings of DRC 2010. pp. 15-16.

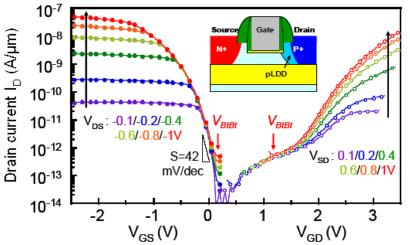


Fig. 6 : $I_D(V_G)$ characteristics of a L_G =100nm SOI TFET in p (left) and n (right) channel operation modes (t_{SI} =20nm; P30: pLDD, 30nm 2nd spacers). Local subthreshold slope at low as 42mV/dec is measured. We define V_{BtBt} as the voltage at which band to band tunneling occurs.

□ F. Mayer et al. Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance. In: Proceedings of IEDM 2008. pp. 1-5.

- **5.** Is T-FET meant to be application-dedicated? Multi- V_T scheme?
- 6. Experimental assessment of power consumption in elementary logic circuits
 - CV/I : high Miller capacitance + low I_{on}: does V_{dd} scaling come to the rescue?
- www.tyndall.ie

Technology	Nanowires
Gain, Signal/Noise ratio Non-linearity	Not available yet
Speed Power consumption	Tunnel FET: SS <thermodynamical at="" limit="" low="" v<sub="">D. Added value of T-FET as compared to impact ionization-mode FETs? SS vs. V_{DD} trade-off</thermodynamical>
Architecture/Integrability	Scalability of T-FETs?
Other specific properties	GAA nanowire: enhanced scalability (as compared to bulk Si single-gate FETs) with relaxed constrains on high-k gate dieletric thickness and silicon body thickness.
Manufacturability (Fabrication processes	-Bottom-Up: (nanowire growth) not Si FF-compatible (Au), yield? 10nm min. diameter
needed, tolerances etc.)	-Top-Down: CMOS-compatible, Abrupt junctions required for TFETs
Timeline	www.tyndall.ie