

Technology	Tunnel FETs
Gain Signal/Noise ratio Non-linearity	Similar functionality than MOSFET but promises lower voltage and lower power consumption, I _{on} may be smaller, Potentially better noise margin and high gain at extremely low current/voltage
Speed Power consumption	Depends on the I _{on} that can be achieved, probably not faster, maybe a little bit smaller Lower power consumption
Architecture/Integrability (Inputs/outputs, digital, multilevel, analog, size etc.)	Similar architecture, some circuit changes needed, may have density penality but there is room for new clever circuit designs.
Other specific properties	
Manufacturability (Fabrication processes needed, tolerances etc.)	SiGe TFET CMOS compatible, Integration of III-V heterojunction TFETs need more work but should be possible, junction quality, interface states, self-alignment critical, variability may be more critical due to exponential dependence of tunneling, V_T variation, doping tails and stochastic behavior of doping, high-k gate stack
Timeline (When exploitable or when foreseen in production)	On the roadmap after GAA and conventional III-V \rightarrow 5-10 years

Benchmarking Beyond CMOS Devices

Technology	Junctionless Nanowire Field Effect Transistor (JNT)
Gain, Signal/Noise ratio Non-linearity	Not investigated yet (single-device characterization)
Speed Power consumption	CV/I: lower Miller capacitance than inversion mode FETs, SS~60mV/dec at V_{dd} =1V, I_{on} similar to IM FETs (contact resistance is the main issue!)
Architecture/Integrability (Inputs/outputs, digital, multilevel, analog, size etc.)	Same as FinFETs/GAA NW: high density required SOI is the substrate of choice (thermal dissipation issues?) Bulk Si OK
Other specific properties	
Manufacturability (Fabrication processes needed, tolerances etc.)	Fully CMOS compatible, no need for ultra- shallow junction engineering. Need for SOI thickness and LER control
Timeline (When exploitable or when foreseen in production)	Outperforms bulk Si GAA IM FETs at gate lengths < 25nm (in terms of SCE control), $\sigma_{\rm VT}$ being addressed,

What is missing?

- Theoretical understanding of the underlying physics, material science, etc.
 - Growth and morphology, surface roughness
 - Physical properties of nanowires (electronic, optical, thermal, mechanical e.g. strain, Interfaces, interface states, Surface chemistry etc)
 - Understanding the relationship between structure, function, properties
 - Further understanding of device operation and mechanism
- Fabrication
 - top-down versus bottom-up
 - Catalyzed, non-catalyzed growth
 - How can we address vertical wires, is there a benefit in density?
- Suitability of benchmarking criteria for nanowires, TFETs, etc.
- What breakthroughs need to be accomplished?
 - Contacts
 - Inversion
 - ...
- Other open issues
 - Non-destructive testing,
 - Metrology e.g. doping concentration, D_{it}, abruptness of doping, uniformity, size,
 - variability

What is missing?

- Modeling and Simulation
 - Compact modeling needed to optimize and predict circuit performance
 - Better models needed to capture the physics of material and devices
 - Understand dynamic behavior of devices