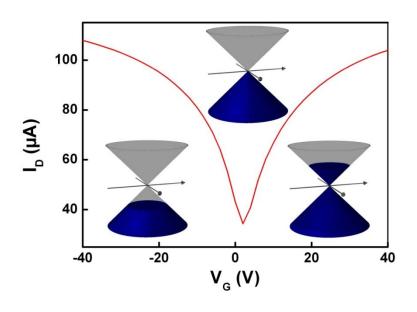
Prospects for graphene electronics

Jari Kinaret¹ and Daniel Neumaier²

¹Chalmers University of Technology, Sweden

²AMO GmbH, Germany


Graphene-based electronics

- At its infancy: Si anno 1955
- Not just graphene but also other two-dimensional materials (BN, MoS₂, MoSe₂, NbSe₂, Bi₂Te₃,...):
 a whole new palette
- Different aspects:
 - Pre-requisites: materials and device fabrication
 - Digital vs. analog
 - Consumer vs. high-performance
 - Integrated systems: optical, flexible
 - Novel components
- For recent reviews, see
 - D. Reddy et al., J. Phys. D 44, 313001 (2011);
 - F. Schwierz, Nature Nanotechnology 5, 487 (2010);
 - S.K. Banarjee *et al.*, Proc. IEEE **98**, 2032 (2010)

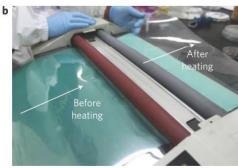
What's so special about graphene?

- Conducting (semi-metal: ambipolar)
- High carrier mobility (up to 200 000 cm²/Vs, on substrate ~10 000 cm²/Vs)
- Large saturation velocity (4 x10⁵ m/s)
- High current-carrying capacity
- Linear dispersion relation (*Dirac fermions*)
- Ultimately thin
- Compatible with planar technology
- Optically transparent (absorption $\pi\alpha \approx 2.3 \%$)
- Flexible and strong (100-300 stronger than steel)
- Best conductor of heat
- Chemically inert
- Biocompatible

Materials production

Exfoliation

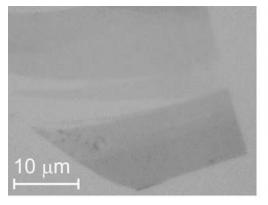
- Mechanical: highest quality, not scalable
- Chemical: mostly flakes, OK for many applications
- Mobility up to 200 000 cm²/Vs and higher (suspended)

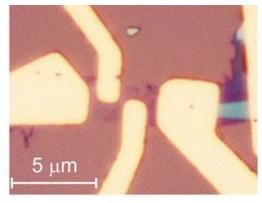

CVD

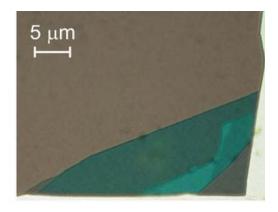
- Scalable, transferable, rapidly developing
- Usually on Cu but also other metals and insulators
- Roll-to-roll production
- Mobility up to 7 000 cm²/Vs on SiO₂, 3x higher on h-BN
 (A. Venugopal et al., J. Appl. Phys. 109, 104511 (2011))

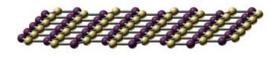
SiC sublimation

- High electrical quality, expensive, not transferable
- Chemical synthesis
 - Atomistic control, placement issues similar to CNTs
- Exploratory techniques



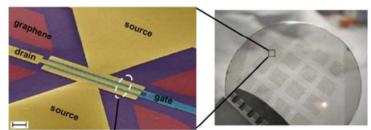



S. Bae et al. Nature Nano. 5, 571 (2010)


Other (mono-)layered materials

 Graphene is the first material in a palette of monolayers from layered materials

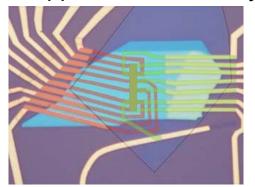
Hexagonal BN Insulator

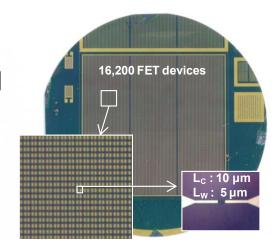

NbSe₂ semimetal

MoS₂
Direct-bandgap SC
(MoS₂ FET:
Nature Nano **6**, 147 (2011))

(K. Novoselov, Rev. Mod. Phys. 83, 837 (2011))

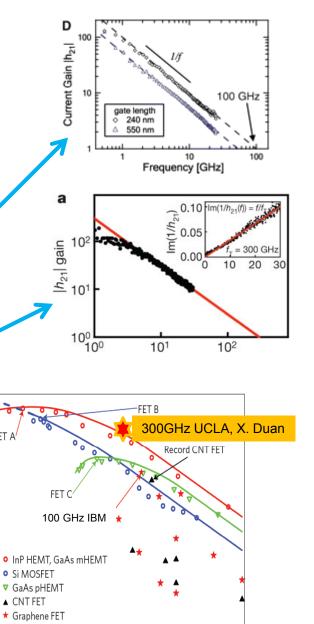
Device fabrication




- Planar technology: conventional lithography is applicable
 - → integrable
- Sandwich structures G-BN-G

(L.A. Ponomarenko et al., to appear in Nature Phys.)

2 graphene layers, individually contacted and separated by 5 BN layers



 Challenge is to use CVD or similar but without having to transfer!

Analog electronics

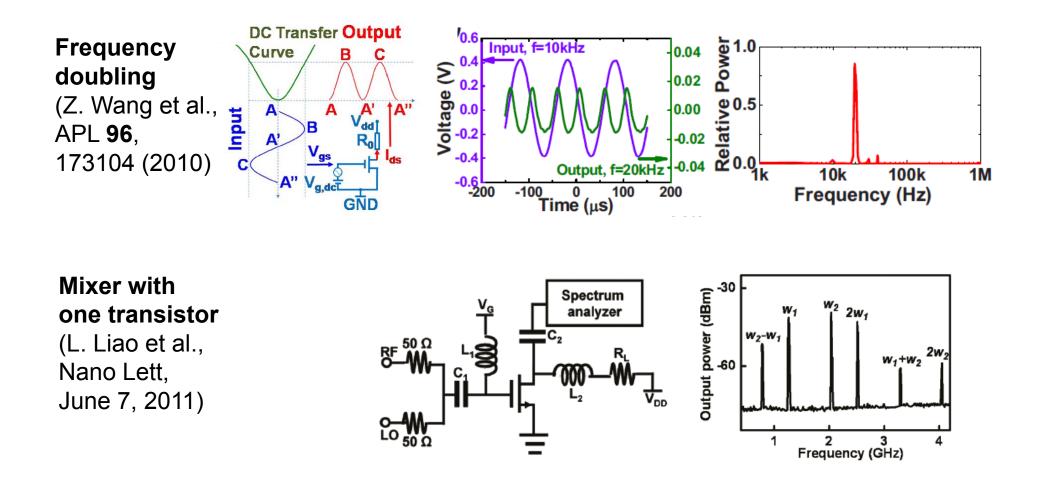
- High mobility and high saturation velocity give promise for fast electronics
- Extrapolated performance
 IBM: f_T = 100 GHz @ 240 nm;
 UCLA: f_T = 300 GHz @ 144 nm
- Poor power gain due to absence of a gap
- Ambipolar: new design feature that enables novel devices (Palacios)

(adapted from F. Schwierz)

1,000 2,000

100

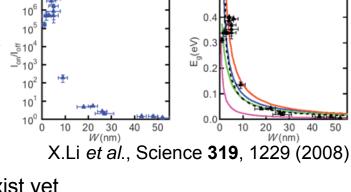
Gate length (nm)


frequency (GHz)

100

Comparison of graphene RF-transistors in terms of maximal transconductance g_m , minimal source-drain conductance g_0 , and maximum power gain A

	Oxid (EOT)	g _m max (mS/μm)	g ₀ min (mS/μm)	A max
IBM (SiC)	PHS/HfO ₂ (17 nm)	0.15	0.4	<<1
IBM (CVD)	Al ₂ O ₃ (10 nm)	0.04	0.2	<<1
UCLA (Exfoliated)	Al ₂ O ₃ (8 nm)	1.2	2	<1
Columbia (BN)	BN (8 nm)	0.4	0.05 - 0.1	4 - 8
Columbia(pulsed)	PVA/HfO ₂ (7nm)	0.5	0.1 - 0.2	2.5 - 5
AMO ($E_G = zero$)	Al ₂ O ₃ (8nm)	0.12	0.02	6
AMO ($E_G \sim 100 \text{meV}$)	Al ₂ O ₃ (8nm)	0.12	0.002	60


Exploiting ambipolarity for RF applications

Room for many more innovations!

Digital electronics

- Challenge: absence of a band gap makes it hard to turn the devices off
- Old thinking: create a gap
 - Graphene nanoribbons (GNR)
 E_q ≈ 0.8 eV nm/W
 - Lithographically: hard, need width 2-5 nm, good edges
 - Chemical synthesis: on metals, hard to position, no transport measurements exist yet
 - Unzipping of CNTs or synthesis inside a CNT
 - Bilayer graphene with electric field: ——gap 100-200 meV, required V_{bg} ~100 V
 - Chemical modification (e.g., nitrophenyl), gap 0.4 eV
 (S. Niyogi et al., Nano Lett. 10, 4061 (2010))
- New thinking: under research
 - BiSFET, tunnel FET, Veselago lens device: both
 BiSFET and tunnel FET are predicted to have very low switching energies, but they have not been demostrated experimentally

Experiment

Self-consistent tight-binding

DFT calculation

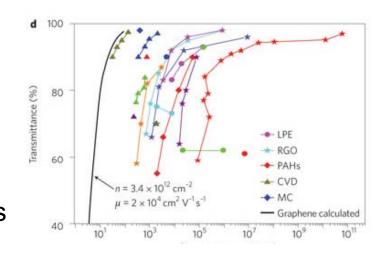
Unscreened tight-binding \bar{D} (V nm⁻¹)

Y. Zhang *et al.*, Nature **459**, 820 (2009)

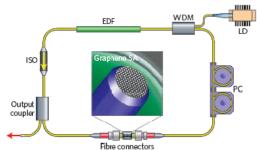
Consumer electronics

Printable electronics

Thin film transistors with
 μ up to 100 cm²/Vs (private information):
 no longer slow, still cheap

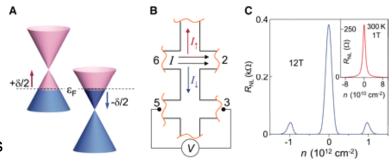

→ may capture some markets from conventional electronics

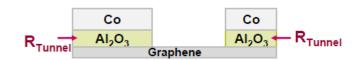
Approaching maturity:
 Vorbeck Materials conducting ink on market in 2012

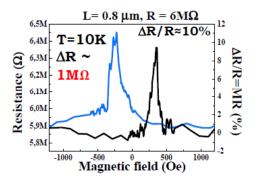


Optoelectronics

- ITO replacement
 - In is a scarce resource with few suppliers
 - Sheet resistance and transparency OK
 - Samsung prototype AMOLED
- Fast lasers, photodetectors, modulators
 - Saturable absorbtion enables fast lasers with sub-ps pulses
 - Unique, universal wideband absorption can be exploited in photodetectors
 - Etc. graphene photonics and plasmonics is one of the fastest growing research areas at the moment


Beyond CMOS


Spintronics:


- large spin coherence lengths and pure spin currents
 (D.N. Ababnin et al., Science 332, 328 (2011))
- large resistance signal for spin-dependent transport in spintronic logic devices (A. Fert, talk in Graphene2020, March 2011)

NEMS:

- low mass and large Young's modulus are promising advantages high frequency NEMS
- larger area implies larger signals than for CNT-devices
- possibility to shape and to sensitively control nonlinearities by tension yield new design freedoms

Benchmarking Beyond CMOS Devices NANO-TEC

Technology	Graphene
Gain Signal/Noise ratio Non-linearity	Poor, would benefit from a gap
Speed Power consumption	High Low – high mobility, good gate coupling
Architecture/Integrability (Inputs/outputs, digital, multilevel, analog, size etc.)	Demonstrated integrability.
Other specific properties	System level integration - multifunctional
Manufacturability (Fabrication processes needed, tolerances etc.)	Mostly OK, except for ribbon fabrication Challenges in transferless fabrication
Timeline (When exploitable or when foreseen in production)	Optical and printable first (~2 years). Analog a few years later. Digital last. Non-standard devices (BiSFET etc.) not demonstrated yet.