Solid State Quantum Computing

Göran Wendin

Bionanosystems Laboratory Microtechnology and Nanoscience - MC2 Chalmers University of Technology Gothenburg, Sweden

- (1) Overview of qubits
- (2) Focus on solid-state qubits
- (3) Focus on superconducting qubits
- (4) Glimpse of a SWOT analysis
- (5) Examples of the state of the art
- (6) Detailed discussion of the SWOT table
- (7) About quantum error correction
- (8) Comments on previous benchmarking
- (9) Comments on Flagship-type efforts

QIP main qubit concepts

QIP = Quantum Information Processing 4,5,6 = Solid-state QIP

- (1) Ion qubits in electrostatic/dynamic traps
- (2) Atom qubits in crossed-laser traps
- (3) Spin qubits in molecules
- (4) Quantum dots (QD)
- (5) Spin qubits in solids
- (6) Superconducting Josephson junction (JJ)
- qubits and circuits
- (7) Photonic flying qubit circuits

There are no (solid-state) quantum computers - yet.

QIP experiments are going on with 10-15 (spin) qubits in molecules (NMR) and ion traps, and there is steady progress in many areas, but competitive QIP still far(?) away.

Focus on hybrid systems to profit from the best properties not found simultaneously in pure systems: High speed (operation) Long coherence time (memory)

Focus on quantum simulators (QS) to simulate static and dynamical properties of small physical and chemical systems with useful accuracy. Solid-state systems may have an edge via technological scalability.

Solid-state qubits comprise: superconducting Josephsonjunction (SC-JJ) based (charge, flux and phase), quantum dot (QD) (charge, spin), and impurities (electron spin and nuclear spin) in crystallites and in molecules.

[In principle one might add atoms and ions in solid-state microtraps.]

Present most successful approaches are JJ-based Transmon qubit - resonator (cQED) systems (30 mK) and spin-based NV centers in diamond (300 K). The recent development is impressive and promising.

CHALMERS Solid-state QC – a first SWOT analysis

 Strengths 2D/3D Cavity/circuit QED-cQED 3D Transmon qubits, T2≈100 μs [2D Transmon qubits, T2≈2-4 μs] Hybrid devices demonstrated No known physical barriers Microwave engineering problem Technological scalability 	 Weaknesses All DiVincenzo criteria not yet fulfilled Coherence time still too short Only 5-10 qubit systems in the near term Scaling of comput. functionality unknown Limited number of useful problems Long-term evolution needed Efficient QEC still in the future Solid-state systems way behind ion traps
 Opportunities •To engineer a small functional QS •To implement the surface code and demonstrate QEC •To implement optimal control •To develop a multi-qubit QS that beats a classical computer. •To develop classical-quantum hybrid/embedded systems •To develop generic QIP •To establish Q-technologies 	 Threats QEC cannot be implemented in practice QIP applications have no practical importance QS cannot cannot beat classical computers QIP/QS remain advanced scientific "toys"

MC-2

- Teleportation
- Measurement-based feedback and feed-forward
- Quantum error correction
- Simulation of quantum system

- Teleportation
- Measurement-based feedback and feed-forward
- Quantum error correction
- Simulation of quantum system
- The next 4-5 years may be decisive
- **Great progress can be expected**

May reveal the timescale for competitive QIP:

5-10-20-50-.... years ??

Classical vs Quantum bits

Logic levels "0" and "1" Low/high voltages V0/V1

Logic levels |0> and |1> Quantum energy levels, states

E1, 1>

JJ core technologies

2-level system:

Superposition state: $|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle$

N qubits -->> Superposition of 2^N eigenstates: Multi-qubit configuration interaction (CI)

 $|\psi\rangle = a_0 |0..00\rangle + a_1 |0..01\rangle + a_2 |0..10\rangle + a_3 |0..11\rangle + ... + a_{(2^{N}-1)} |1..11\rangle$

Coherent N-bit memory Parallellism (superposition) and entanglement (non-product state)

JJ core technologies

Wallraff group, ETH, Zürich (2011)

JJ core technologies

Quantronics group, CEA-Saclay, France (2011)

CHALMERS JJ core technologies – phase qubits

Qubits: phase qubits Memory: high-Q resonators Switchable couplings

quRAM quCPU quRAM Z_2 ·///// M_2 M₄ frequency

Martinis group, UCSB, CA, USA (2011)

NANO-TEC, Lausanne, 30 May 2012

Processing - memory - communication – collaboration The only realistic option for non-toy QIP ?

Picture adapted from Peter Zoller et al.

NANO-TEC, Lausanne, 30 May 2012

QIP hybrid devices, state of the art

Wallraff/Ensslin groups, ETH, Zürich (2011)

NANO-TEC, Lausanne, 30 May 2012

 $\mathbf{C}\mathbf{2}$

QIP hybrid devices, state of the art

Quantronics group, CEA-Saclay, France (2011)

Diamond, NVC for RT QIP: Wrachtrup group, Stuttgart; Hanson, Delft; Lukin group, Harvard; Awschalom group, UCSB;

CHALMERS Solid state of the art of Q-algorithms

Bell states State tomography Gate tomography **Bell inequalities GHZ/W** states **Deutsch-Jozsa** Grover **Measurement-based state** initialization Measurement-based feedback

Martinis' group, UCSB

Schoelkopf's/Devoret's group, Yale

Wallraff's group, ETH, Zürich

Quantronics group, CEA-Saclay

IBM, Yorktown Heights

Wrachtrup's group, Stuttgart (Diamond, NVC)

Lukin's group, Harvard (Diamond, NVC)

L. DiCarlo et al., Delft

Solid-state QC –SWOT analysis

Strengths

•2D/3D Cavity/circuit QED-cQED
•2D Transmon qubits, T2≈5 μs
•3D Transmon qubits, T2≈100 μs
•Hybrid devices demonstrated
•No known physical barriers
•Microwave engineering problem
•Nanofabrication, e-beam litho
•Technological scalability

Weaknesses

All DiVincenzo criteria not yet fulfilled
Coherence time still too short
Only 5-10 qubit systems in the near term
No generic computational functionality
Limited number of useful problems
Long-term evolution needed
Efficient QEC still in the future
Solid-state systems way behind ion traps

Opportunities

- •To engineer a small functional QS
- •To implement the surface code and demonstrate QEC
- •To implement optimal control
- •To develop a multi-qubit QS that beats a classical computer.
- •To develop classical-quantum hybrid/embedded systems
- •To develop generic QIP
- •To establish Q-technologies

Threats

•QEC cannot be implemented in practice
•Coherence time too short for implementation of the measurements and operations needed to maintain coherence and to produce meaningful computation/simulation
•QIP applications have no practical importance
•QS cannot cannot beat classical computers
•QIP/QS remain advanced scientific "toys"

CHALMERS The million dollar question

- Will the surface code make QEC possible?
- 13 qubits + acillas; 4-qubit parity measurements

From D. DiVincenzo (2009) A US collaboration (IBM and others) are determined to develop and test this approach within 4 years

QIP qubit devices, state of the art

	JJ Tmon	JJ Fx	JJ Phs	QD spin	NVC spins	Ion trap
	Transmon	Flux	Phase	GaAs	diamond	
Qubit # operated	4	4 (80)	3	2	3 (6)	14
1q gates	Yes	Yes	Yes	Yes	Yes	Yes
T1 (relaxation)	2 μs	1 μs [3]	0.6 µs [5]	1 s	100 s	~1 s
T2 (decoherence)	2 μs			1 μs	2 ms	~ 1 ms
T2 _{Echo}	5 µs	20 µs [18]	0.3 µs [5]	1 μs	2 ms	~1 s
T2 (3D)	95 μs					
$T_{op}, 1q$	1 ns	1 ns		50 ns	3 ns	μs
· -				4 ps (optical)		
2q gates	Yes	Yes	Yes	Yes	Yes	Yes
$T_{op}, 2q$	1-2 ns	1-2 ns	1-2 ns	200 ps	1 μs	μs
Nq direct coupling	2	2	3	2	> 3	> 8
Nq-CPW/resonator	3-4	?	?	0	0	0
coupling (cQED)						
Readout	Cavity, disp	Osc, disp	Direct	Electrical	Optical	Optical
	Osc, disp	Osc, switch	Osc, disp	Fidelity		
	Fidelity for	Fidelity for		1q > 98%		
	1q >>98%	1q >> 90%		Also optical		
Nq individ readout	4	?	3	2	1?	?

QIP algorithms, state of the art

	JJ Tmon	JJ Fx	JJ Phs	QD spin	NVC spins	Ion trap
	Transmon	Flux	Phase	GaAs	diamond	
Interfacing	Tmon-CPW- NVC	?	Phs-CPW	spin-photon	CPW-NVC	
Hybrid devices	None	None	None	None	None	None
Technological scalability	Yes	Yes	Yes?	Unknown	Yes?	Unknown
Computational scalability	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
Bell state	Yes	Yes	Yes	No	Yes	Yes
State tomography	Yes	No	Yes	No	Yes	Yes
Gate tomography	Yes	No	Yes	No	Yes	Yes
Bell inequalities	Yes	No	Yes	No	Yes	Yes
GHZ, W states	Yes	No	Yes	No	Yes	Yes
Deutsch-Jozsa	Yes	No	Yes?	No	No ?	Yes
Teleportation	No	No	No	No	No	Yes
Grover (Search)	Yes	No	No	No	No	Yes
Shor (Factorization)	No	No	No	No	No	QFT
<i>QEC</i> (Quantum Error Correction)	Yes (1 step)	No	No	No	No	Yes (3 steps)

MC2