

Discussion on Design

Nature Aware Design
The Convergence of Form and Function

Workshop 2, Benchmarking of new Beyond CMOS device/design concepts,

Hotel Divani Caravel, Vassileos Alexandrou Av.2, Athens, Greece

Dan Herr: herr@src.org; danieljcherr@gmail.com

13-14 October 2011

What can we learn from Nature?

A hierarchy of design and fabrication methods

Current Semiconductor Methods

Living Systems

Programmed

Serial

Deterministic

Increasing information content, complexity

and fabrication control required

Subtractive Versus Programmed Assembly 380

Complex Matter = Energy + Information + Material

Comparison of subtractive versus bio-assisted assembly/patterning

D. Herr (2000)

Comparative metrics	Fab output [Subtractive patterning]	Growth of a baby [Programmed assembly]	Programmed assembly advantage
Bits patterned per second	<1.3E9 bits/s	>1.5E+17 amino acid/s	>1E+8
Energy required per bit	>2.1E-8 J/ bit	<6.6E-17 J/amino acid	>3E+8

¹ Subtractive processing: Form in-place ² Bio-assisted assembly: Grow remotely and place

The machinery of life

What can we learn from Nature? A hierarchy of design and fabrication methods

Increasing information content, complexity and fabrication control required

Directed self assembly: Form patterns in place

Directed Self-Assembly:

JRC

A Synergistic Patterning Option

The Pattern Fidelity Challenge

Layout Mask Wafer

Stanford

- Some Benefits:
- ☐ Lower LER and variability
- ☐ Enhanced Resolution
- ☐ Self Healing

A Key Challenge:

□ Defects

An estimate of nucleic acid 'bio-bit' defect rates

- Consider a DNA string as the biological equivalent of a chip, with a nucleic acid as the biological equivalent of a bit.
- ☐ Given:
 - The DNA defect rate of ~1E-4 represents a 99.999% 'bio'-chip yield.¹
 - ☐ A double stranded DNA molecule contains ~1E9 to 2E9 nucleic acids
- ☐ Then, nucleic acid 'bio-bit' error rates are ~1E-13.
 - \square Where the bio-bit error rate =~1E-4errors/DNA*1E-9DNA/nucleic acid.
- □ Additionally, bio-error correcting mechanisms place an upper limit on the net defect rate for DNA fabrication as < 1E-14.</p>
 - ☐ Simulations by de Pablo suggest that the intrinsic defect rate for directed self assembly is <<1E-14.

Resolution and complexity

Due to unique crosslinking ability of PaMS-b-PHOST, multiple morphologies on one wafer are possible

Size of Molecular Scaffolds

Folding DNA to Create Nanoscale Shapes and Patterns, Paul W. K. Rothemund, Nature 440, 297-302 (16 March 2006)

Directed Assembly of Complex Shapes (MIT)

Trimmed DSA patterns (MIT LL)

3 nm Silicate pores (UMA-A)

A Strategic Joint Challenge/Opportunity for Materials Scientists, Designers and Others

What is the next evolutionary step?

Smart resists, with designed dimensional, placement, and alignment control?

With electronically useful functionality?

Example of a Functional Material: Nanotube Radio

Nature Inspired Design: The Convergence of Form and Function

Fabrication and Integration of Low Power D/A/MS Application Specific Materials

Example: Receptor Cells of the Inner Ear

What can we leverage from these natural structures that might enable new families of selective sensors?

Source: http://www.neurophys.wisc.edu/h&b/textbook/chap-5.htm

Can we fabricate hybrid structures, such that different regions respond maximally to different input frequencies based on the local physical properties?

The ultimate functional diversification challenge: Proof of concept demonstration

Consider a neutrophil chasing a S. aureus in our blood stream:

This represents an example of a distributed intelligent network of autonomous systems, composed at the nano-level, with adaptive emergent behaviors

[Courtesy of Chih-Ming Ho, UCLA]

- Nature's ability to leverage miniaturization and functional diversification provides clues for developing convergent nature aware design and fabrication options.
- This is a good time for the research and development communities to question some of our basic assumptions about variability, cost, power, and functionality in the micro- and nano- domains.
- Challenge: Can potential nature inspired material and design solutions be identified and matured in time to impact key insertion windows?

Discussion on Design: Nature Aware Design

	Technology	Directed Self Assembly: Beyond CMOS Resists
	Gain Throughput	NA
	Signal/Noise ratio Non-linearity	NA Material driven
	Speed Power consumption	NA NA
7	Architecture/Integrability (Inputs/outputs, digital, multilevel, analog, size etc.)	Compatible with CMOS and post CMOS patterning methods.
	Other specific properties	Low energy processing; Non-regular patterns feasible; Compact models are needed.
	Manufacturability (Fabrication processes needed, tolerances etc.)	Benefits demonstrated: Low LER[<1.9 nm 3σ]; self healing; density multiplication; high resolution; high throughput [25 wafers @ 2-3 minute anneal; registration error <6 nm over several μ ms. Concern: Defectivity demonstrated @ <25/cm^2; theory <<1E-12.
	Timeline (When exploitable or when foreseen in production)	ITRS Lithography Potential Solution insertion window: 2018-2019; Likely 1 st insertion option: mass storage; Several companies are exploring earlier insertion dates.

Discussion on Design: Nature Aware Design

Technology	Beyond CMOS Application Specific Materials
Gain Throughput	TBD
Signal/Noise ratio	TBD
Non-linearity	Application specific
Speed	TBD
Power consumption	TBD
Architecture/Integrability	Target ITRS identified More-than-Moore applications;
(Inputs/outputs, digital, multilevel, analog, size etc.)	Need foundational understanding of material structure- property-relationships and material-by-design capability
Other specific properties	Increased material complexity;
Manufacturability (Fabrication processes needed, tolerances etc.)	Should be compatible with low energy, high throughput CMOS and post CMOS patterning, except where flexible applications are warranted;
Timeline (When exploitable or when foreseen in production)	Potential insertion window: Beyond 2018 [Guardian Angels suggest insertion at or beyond 2022]

How small can we go?

danieljcherr@gmail.com

120,000 years old Miteva (2005)