

D.VERKEST

CMOS SCALING: THE BAD

Switching heat/cm² ~ $(V_{DD}/\lambda)^3$ V_{DD} Leakage Power ~ exp(-mV_T/kT) $\rightarrow V_T$ Clock $F_{cl} \sim I_{on}/V_{DD} \sim \mu (V_{DD} - V_T)^{0.5}/\lambda \rightarrow$ Clash

Device variability $\sigma V_T \sim I/\lambda \rightarrow \sigma F_{cl}$

Interconnect RC delay

CMOS SCALING: THE GOOD

- "Zero" static power: symmetric n and p FET
- Simple (planar) layout strategy (litho compatible)
- Symmetric $I/V \rightarrow$ bidirectional switch
- Gain: signal restoration, noise margin, RF and analog
- ► W/L sizing → Fanout I ... 10⁶
- Connectable by 10+ wiring layers
- Low manufacturing cost: < I n\$/transistor</p>
- Design technology and IP libraries
- Versatile: logic, storage, interconnect, I/O, analog, ...

→ complete System-on-Chip

Beyond CMOS device inventor

The CMOS designer

Source: W. Joyner, IBM

Beyond CMOS device inventor

Hey, here's a great new device ...

- It's really cool! It looks useful!
- We actually made one! It worked!

The CMOS designer

Beyond CMOS device inventor

Hey, here's a great new device ...

- It's really cool! It looks useful!
- We actually made one! It worked!

- ... but I can't do design with them
 - I don't understand them.
 - You can't characterize them, model them, simulate them, make them in volume,

Source: W. Joyner, IBM

Beyond CMOS device inventor

Hey, here's a great new device ...

- It's really cool! It looks useful!
- We actually made one! It worked!

- ... but I can't do design with them
 - I don't understand them.
 - You can't characterize them, model them, simulate them, make them in volume, ...

Source: W. Joyner, IBM

SYSTEMABILITY

The ability to economically design and manufacture reliable systems from the interaction of devices fabricated in a given technology.

SYSTEM = COMPUTATION, STORAGE, INTERCONNECT, I/O, Every Contender

- Must add value to one or more of the 4 system functions and be compatible with the others
- All-in throughput/Watt and/or transactions/Joule must beat CMOS at time of manufacturing at equivalent or lower cost
- System level manufacturability, reliability, testability must beat ultimate CMOS solutions
- Room temperature operation is mandatory
- Device variability must be mitigated and modeled and cost efficient error resilient design solutions must be available
- Design methods and tools must be in place supporting design from device to system. Design tool development time is 3x technology development time.

PDK

Beyond CMOS device inventor

The CMOS designer

- It's really cool! It looks used!
- We actually made one! It worked!

... but I can't do design with them

- I don't understand them.
- You can't characterize them, model them, simulate them, make them in volume, ...

Source: W. Joyner, IBM

IMEC INSITE PATHFINDING INITIATIVE LINKING PROCESSES, DEVICES, CIRCUITS, SYSTEMS

BEYOND

BESIDE In the spirit of

Thomas J.Watson "I think there is a world market for maybe five computers."

BE NOT

BE IN

BEYOND

BESIDEMolecular electronics (plastic/organic)

BE IN

BE NOT

BEYOND

BESIDE

- Molecular electronics (plastic/organic)
- MEMS (complementary/on-top-off)

BE IN

BE NOT

BEYONDQuantum Computing

BESIDE

- Molecular electronics (plastic/organic)
- MEMS (complementary/on-top-off)

BE IN

BE NOT

BEYONDQuantum Computing

BESIDE

- Molecular electronics (plastic/organic)
- MEMS (complementary/on-top-off)

BE INSpintronics

BE NOT

BEYONDQuantum Computing

BESIDE

- Molecular electronics (plastic/organic)
- MEMS (complementary/on-top-off)

BE IN

- Spintronics
- Nanowires

BE NOT

BEYONDQuantum Computing

BESIDE

- Molecular electronics (plastic/organic)
- MEMS (complementary/on-top-off)

BE IN

- Spintronics
- Nanowires
- Memristors

BE NOT

BEYONDQuantum Computing

BESIDE

- Molecular electronics (plastic/organic)
- MEMS (complementary/on-top-off)
- Graphene

BE IN

- Spintronics
- Nanowires
- Memristors
- Graphene

BE NOT