Si-based electronics The last ITRS node... Is there life beyond it?

W. Kuzmicz Warsaw University of Technology

> First NANO-TEC Workshop Granada, 20 January 2011

• Nothing, i.e. "CMOS forever"?

- Nothing, i.e. "CMOS forever"?
- "The next big thing"?

- Nothing, i.e. "CMOS forever"?
- "The next big thing"?
- A new Si-based technology, maybe CMOS-alike, maybe not?

- Nothing, i.e. "CMOS forever"?
- "The next big thing"?
- A new Si-based technology, maybe CMOS-alike, maybe not?

Let's look for it and call it a bridge technology

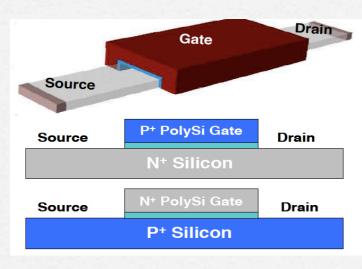
 Many ideas have been abandoned (like RTD or SET), but... never say "impossible"; let's consider:

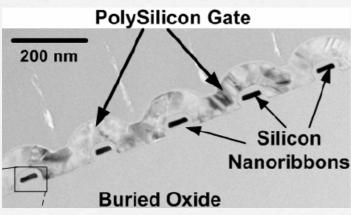
- Many ideas have been abandoned (like RTD or SET), but... never say "impossible"; let's consider:
- FinFET

- Many ideas have been abandoned (like RTD or SET), but... never say "impossible"; let's consider:
- FinFET
- TFET

- Many ideas have been abandoned (like RTD or SET), but... never say "impossible"; let's consider:
- FinFET
- TFET
- Junctionless FET

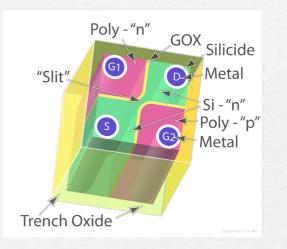
- Many ideas have been abandoned (like RTD or SET), but... never say "impossible"; let's consider:
- FinFET
- TFET
- Junctionless FET
- ... anything else?

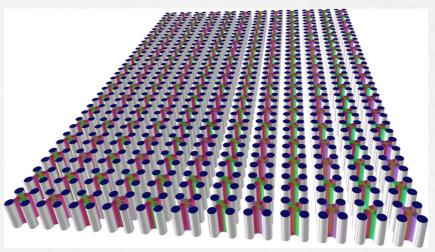

- Many ideas have been abandoned (like RTD or SET), but... never say "impossible"; let's consider:
- FinFET
- TFET
- ... anything else?



Junctionless FET

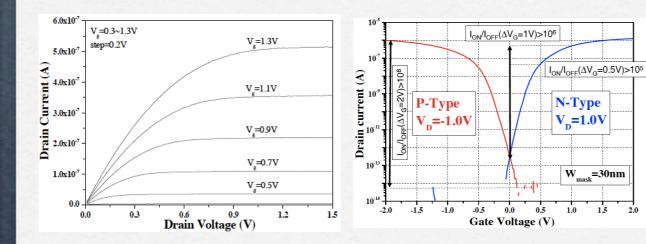
SOI Gated Resistor

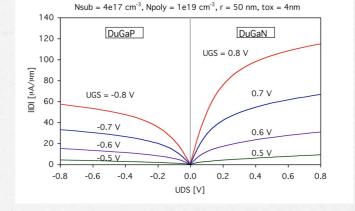

J.P.Colinge et al., 2009 IEEE Int. SOI Conf.



Vertical Slit FET

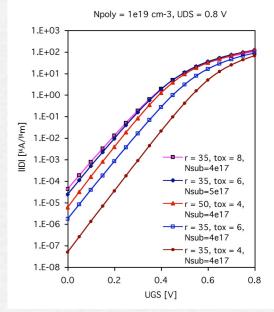
W. Maly, US patent application 2007


Source: J.P.Colinge et al., conference presentation


Junctionless FET

SOI Gated Resistor

Vertical Slit FET

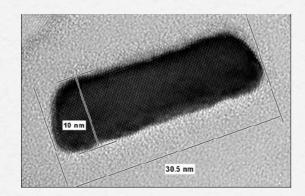

Ideal subthreshold characteristics: ~60 mV/decade, good output characteristics

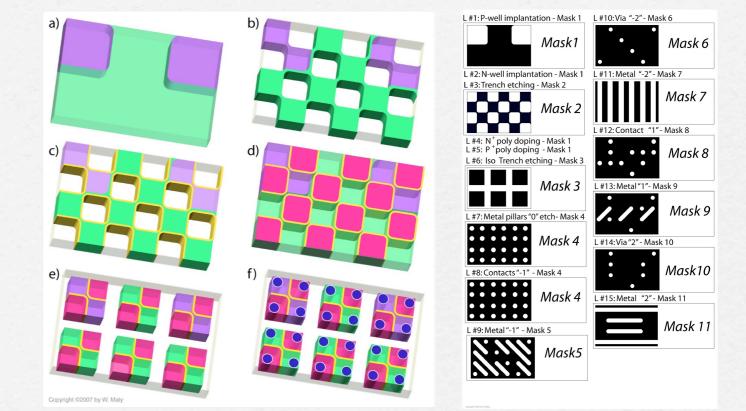
Source: J.P.Colinge et al., conference presentation

Source: courtesy of A. Pfitzner, Warsaw Univ. of Technology

Experimentally confirmed

1.5


2.0


Junctionless FET

SOI Gated Resistor

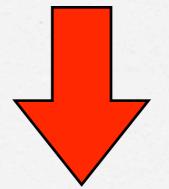
Vertical Slit FET

Technology: Si nanoribbon on SOI

VESTIC technology: All processes routinely used in CMOS, litho friendly

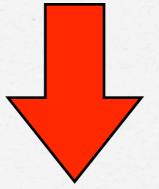
Source: J.P.Colinge et al., conference presentation

Source: courtesy of W. Maly


Benchmarking

Benchmarking

We don't need individual devices, we need circuits and systems


Benchmarking

We don't need individual devices, we need circuits and systems

Benchmarking

We don't need individual devices, we need circuits and systems

What should be assessed is the <u>circuit performance</u>, not raw device characteristics

1. <u>Circuit-based</u> performance (speed, power, new circuit concepts - double gate, mixing FET and bipolar, what else - analog?)

- 1. <u>Circuit-based</u> performance (speed, power, new circuit concepts double gate, mixing FET and bipolar, what else analog?)
- **2.** Suitability for <u>large scale integration</u> (number of gates per unit area? 3D?)

- 1. <u>Circuit-based</u> performance (speed, power, new circuit concepts double gate, mixing FET and bipolar, what else analog?)
- **2.** Suitability for <u>large scale integration</u> (number of gates per unit area? 3D?)
- **3.** <u>Manufacturability</u> (new processes? exotic materials? litho simple or complex? ... what else?)

- 1. <u>Circuit-based</u> performance (speed, power, new circuit concepts double gate, mixing FET and bipolar, what else analog?)
- **2.** Suitability for <u>large scale integration</u> (number of gates per unit area? 3D?)
- **3.** <u>Manufacturability</u> (new processes? exotic materials? litho simple or complex? ... what else?)
- 4. Expected variability and yield

- 1. <u>Circuit-based</u> performance (speed, power, new circuit concepts double gate, mixing FET and bipolar, what else analog?)
- **2.** Suitability for <u>large scale integration</u> (number of gates per unit area? 3D?)
- **3.** <u>Manufacturability</u> (new processes? exotic materials? litho simple or complex? ... what else?)
- 4. Expected variability and yield
- 5. <u>Design</u> (new methodologies needed? If so, what ones?)

- **1.** <u>Circuit-based</u> performance (speed, power, new circuit concepts double gate, mixing FET and bipolar, what else analog?)
- **2.** Suitability for <u>large scale integration</u> (number of gates per unit area? 3D?)
- **3.** <u>Manufacturability</u> (new processes? exotic materials? litho simple or complex? ... what else?)
- 4. Expected variability and yield
- 5. <u>Design</u> (new methodologies needed? If so, what ones?)
- 6. <u>Cost per function (...but can we estimate it?)</u>

Tech	Version	Performance	Integrability	Manufactura bility	Variability and yield	Design	Cost(?)
Fin FET							
	•••						
TFET							
Jless FET							
	•••						

Thank you!

Now it's YOUR turn: questions and suggestions, please!