

Carbon-based Electronics: Graphene

1st NANO-TEC Workshop European Commission ICT Theme

Jeong-Sun Moon HRL Laboratories, LLC

Team Members:

Deanna Curtis, Steven Bui, Ming Hu, Dana Wheeler, Danny Wong, Dustin Le, Andrey Kiselev, Chaoyin Zhou, Richard Ross, Chuck McGuire, Bin Shi (HRL), Kurt Gaskill, Joe Tedesco, Paul Campbell, Glenn Jernigan (NRL), Josh Robinson, Mark Fanton (EOC), Ying Liu (PSU), Peter Asbeck (UCSD), Ki-wook Kim, M. Nardelli (NCSU), and Amy Liu (IQE)

Partially Supported by DARPA CERA program, monitored by Dr. John Albrecht.

The views, opinions, and/or findings contained in this article/presentation are those of the author/presentor and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense."

- 1. A brief introduction of graphene
- 2. Unique properties of graphene
- 3. From the unique properties to future applications Q: Would graphene impact future systems?
- 4. Recent progress in graphene
- 5. Challenges and Future outlook

- Graphene = a single layer of carbon atoms in honeycomb lattice
- 2D structure instead of 1D nanowires or carbon nanowires
- Recent study of graphene was initiated by Prof. Geim's group and Prof. deHeer's group

Graphene Band structure

Zero bandgap \rightarrow Ambipolar (n, p) characteristics

Bandgap Engineering

A bilayer graphene

Ohta, Bostwick, Seyller, Horn and Rotenberg. Science 313, 951 (2006)

A bilayer graphene offers a bandgap of ~0.25 eV (~10 $k_B T_{room}$).

- Higher saturation velocity can be achieved at reduced electric field from graphene.
- Offer highly-scaled ballistic transistors.

2D model with full electrostatics Initial calculation: ignores tunneling from valence band

Merit	Si	Graphene	GaAs	In _{0.53} Ga _{0.} ₄₇ As	InAs	InSb
Mobility (cm²/vs)	1000 (n) 300 (p)	15000~ 200000	5000	11000	16000~ 26000	30000
Vsat (cm/sec)	8e6	~ 5e7	1.2e7	2.7e7	4e7	5e7
Bandgap (eV)	1.12	0~0.2max	1.43	0.72	0.36	0.18
Carrier density (cm2)		5e12 ~1e13		2~2.5 e12	1.3e12	1e12
MOS Scaling		High				
Si CMOS compatibility		High	Low	Low	Low	Low

- Zero-band gap with bandgap engineering possibility
- Fermi Velocity = 10⁸ cm/sec (10x better than Si)
- Saturation velocity = 5x10⁷ cm/sec (~2x faster than InP)
- Mobility (room temp) ~100000 cm²/vs (~10x better than III-V)
- Current density = 10⁹ A/cm²
- Highest quality material on flexible substrates (~100-1000x better than any other flexible electronics materials known)
- Highest optical transparency
- Thermal conductivity ~48 W/(cm K) (~2x better than diamond)
- Young's modulus = 500 GPa (~better than SiC, 1.2 TPa diamond)
- Lowest mass and high surface-to-volume ratio
- Thermoelectric energy conversion
- A single molecule sensing

Potential Applications of Graphene

- Self-aligned (n, p) MOSFET
- Advantage for device scaling

• High drive current

Graphene Transistor Development Phase

^{© 2010} HRL Laboratories, LLC. All Rights Reserved

• Epitaxial Graphene layers were grown on 50 and 75 mm diameter 6H-SiC wafers

- Using spectral Raman, 22500 sites were analyzed.
- The nGL was determined by fitting the 2D spectra.
- The findings were correlated with transmission electron microscopy (TEM).

• Raman spectral analysis shows single and bilayer graphene on an entire 2" wafer.

• Graphene MOSFETs show an maximum lon/loff of 26 at Vds = 1 V.

Graphene p-MOSFET and n-MOSFET are demonstrated

Graphene MOSFETs show a record peak FET mobility of 9100 cm²/Vs. $\mu_{FET} = (L/W) (gm/C_q) (1/Vd).$

Demonstrated 10X better FET mobility than that of Si CMOS

Long-channel ($L_g = 3\mu m$) Graphene MOSFETs show a record transconductance of 770 mS/mm at Vds = 4 V.

A long-channel graphene MOSFET with a record gm/Cgs was demonstrated.

• Demonstrated wafer-scale graphene RF transistors operating in GHz domain.

Graphene-on-Si technology offer a path toward very largescale of graphene synthesis

First demonstration of ambipolar (e & h) behaviors from graphene-on-Si

Semiconductor Comparison for Receiver

	Graphene MOSFET	Si MOSFET	GaAs PHEMT	InAs
2DEG(1/cm ²)	1-10e12		2e12	1.3e12
ldss (A/mm)	0.8 – 3	1	0.5	
Hall Mobility (cm²/vs)	>20000	1500	5000	26300
Vsat (cm/sec)	4.9e7*	8e6	2e7	3.5e7
Gm (mS/mm)	760		500	2000
K(W/cm-K)	48	1.5	0.54	0.67 (InP)
Ft, fmax	300, 300 (goal)	350,	120, 223	212, 270
LNA MMICs		86-108 GHz	77 GHz	94 GHz
Receiver-on-chip w/ integration density	Graphene- on-Si approach	SiGe 77GHz Radar	Need baseband processing	Need baseband processing

* Based on gm/Cg

Technology Needs for Ultra-Low-power & Linear Receiver

LNA Technology	Vds (V)	DC power/stage
0.18 um CMOS	1-2	~9 mW
0.13 um CMOS	0.8-2	~2-10 mW
InP	1.5	~11-15 mW
МНЕМТ	1.4	~5 mW
AISb/InAs	0.15 -0.4	0.9 – 2.5 mW
Graphene	0-0.2	tbd

Lower bandgap devices offer low-power LNA operation.

 $F_{min} = 1 + k \cdot f \cdot C_g \cdot [(R_s + R_g)/gm]^{1/2}, f_T \sim gm/C_g \sim V_{sat}/(2\pi \cdot L_g),$ bandwidth: Rn (noise resistance) ~ [1+(2\pi f^*Cg^*Rg)^2]/gm^2

- High-performance LNA requires high Vsat.
- Graphene and ABCS HEMT offer the highest Vsat.
- Reduced Rn \rightarrow wider bandwidth
- Provide low-noise performance over wider bandwidth

Question: Would graphene be high-performance linear FET?

Phase/Amplitude modulation in Digital Radio, Comm & spread spectrum: Requirement of phase noise (QPSK)= -90 dBc/Hz at 100 kHz

Ultra wideband Spectrally-pure RF Signal Generation

RF systems need spectrally-pure ultra-wide band RF/MW/mmW signal generation. Until now, there are no clear technical implementation approaches.

Graphene shows a feasibility and path for the desired signal generation.

Graphene for high-efficient & linear Mixer

- Higher gm near the ambipolar point would offer mixer operation with reduced LO power and LO phase noise consequently.
- Improve mixer efficiency
- Reduce unwanted reciprocal mixing in electronic warfare environments
- Improve phase-noise limited mixer dynamic range

ABORATORIES

START 9006Hz STOP 2.100MHz RBW 3.06Hz VBW 3.06Hz SWP 340ms

35

40

Graphene NEMS: Fast & Linear RF Switches

RF systems such as phased-array-radars need signal routing with fast, linear and low-loss capability.

	FET or PIN	MEMS	Graphene	
Insertion loss	> 1dB	<0.2 dB	<0.2 dB	sec)
Isolation	< 25dB	>30 dB	>30 dB	sn) əu
Linearity	Nonlinear	Linear	Linear	g Tim
Speed	~10nS	~uSec	~5nS	ching
Operation voltage	a few V	30-70V	1-5V	Swit
Reliability	High	Medium (due to sticking)	tbd	

$$\tau = 3.67 \frac{V_p}{V_s \omega} = 3.67 \frac{V_p}{V_s} \sqrt{\frac{m}{k}}$$

Pull-down Voltage (V)

•Offer a fastest (GHz) RF switch with low (1V) actuation voltage.

•Enable integration with CMOS, III-V ICs. •Offer an integrated electronic-NEMS.

	Table 1. Flexi	1		
Material	Field-effect Mobility (cm²/Vs)	Thermal Conductivity (W/mK)	High-speed	Cost performance
a-Si:H	<1	< 5		
Pentacene	1.5	0.48	good	good
a-In-Ga-Zn-O	6-9	<1		
Si nano-membrane			poor	poor
Graphene	1000 -10000	5000	30-inch	good

Monolayer-thick graphene can be

magnitude higher flexibility while

only material form with 4-5 order-of-

maintaining high material quality, in

Fundamental physical limit: Strain = thickness/(2*radius of curvature)

principle. HRL's sensor Rx **RF tag on PCB** Flex Electronic Material Comparison 10⁴ 111-1 graphene Electronic mobility (cm²/Vs) 1000 Si Τx Ultra-thin Si (ft*lg = 3GHz*um) 100 (d) 10 **Organic film** (ft*lg <3 MHZ*um) Graphene Stretchable Si **Samsung**, 2010 Univ. of Illinois 10 100 1000 1 1/radius of curvature (1/mm)

Some other applications

- EMI
- Non-volatile memory
- Cooling
- Harsh environment
- THz
- Thermoelectric
- Chem sensors
- Bioelectronics

Transparent and EMI shielding

Graphene as Emerging Material

