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Graphene

• Graphene = a single layer of carbon atoms in honeycomb lattice
• 2D structure instead of 1D nanowires or carbon nanowires
• Recent study of graphene was initiated by Prof. Geim’s group 
and Prof. deHeer’s group

A single layer of sp2 carbon Graphite

Novoselov et al., 
Science, p.666, 2004

Epitaxial graphene
Berger et al., J. of 
Phys. Chemistry, 
p.11912, 2004

http://www.lbl.gov/Science-Articles/Archive/sabl/2007/Nov/assets/img/lrg/graphene_sheet.jpg
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Band structure:
• Zero bandgap
• Zero effective mass
• Linear dispersion

E vs k

InSb

graphene

Zero bandgap  Ambipolar (n, p) characteristics

Graphene Band structure

ABAB

electronhole 

A single layer of graphene

P. R. Wallace, Phys. Rev, 1947
A. H. Castro Neto, Rev. of Modern Physics, 2009
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Ohta, Bostwick, Seyller, Horn and Rotenberg. Science 313, 951 (2006)

Bandgap Engineering

Top layer more dopedEqually dopedBottom layer more doped

A bilayer graphene

A bilayer graphene offers a bandgap of ~0.25 eV ( ~10 kB Troom ). 
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Graphene 
(electrons and holes)

Si

ky
<vx>=2/

 

VF

Source Injection Velocity
(6.4x107 cm/sec)

Saturation Velocity (4.7x107 cm/sec)

Graphene: Vsat and Critical field

• Higher saturation velocity can be achieved at reduced electric field from graphene.
• Offer highly-scaled ballistic transistors.
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Ballistic Graphene FET Characteristics

2D model with full electrostatics
Initial calculation: ignores tunneling from valence band

Lg=60 nm
EOT=2 nm
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Channel charge-limited ft
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How does Graphene Compared with?

Merit Si Graphene GaAs In0.53Ga0.

47As
InAs InSb

Mobility 
(cm2/vs)

1000 (n)
300 (p)

15000~ 
200000

5000 11000 16000~
26000

30000 

Vsat (cm/sec) 8e6 ~ 5e7 1.2e7 2.7e7 4e7 5e7

Bandgap (eV) 1.12 0~0.2max 1.43 0.72 0.36 0.18

Carrier 
density (cm2)

5e12 
~1e13 

2~2.5 
e12

1.3e12 1e12

MOS Scaling High

Si CMOS 
compatibility

High Low Low Low Low
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Properties of Graphene

• Zero-band gap with bandgap engineering possibility
• Fermi Velocity = 108 cm/sec (10x better than Si)
• Saturation velocity = 5x107 cm/sec (~2x faster than InP)
• Mobility (room temp) ~100000 cm2/vs (~10x better than III-V)
• Current density = 109 A/cm2

• Highest quality material on flexible substrates (~100-1000x 
better than any other flexible electronics materials known)

• Highest optical transparency
• Thermal conductivity ~48 W/(cm K) (~2x better than diamond)
• Young’s modulus = 500 GPa (~better than SiC, 1.2 TPa 

diamond)
• Lowest mass and high surface-to-volume ratio
• Thermoelectric energy conversion
• A single molecule sensing
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Potential Applications of Graphene

2008, Univ. of Manchester

LCD Stanford Univ, 2010 Samsung, 2010

Flexible graphene 
HRL, 2009

Stretchable Si
Univ. of Illinois

Graphene
Samsung, 2010

UT Dallas, 2008
Interconnect
GIT, 2009

http://pubs.acs.org/action/showImage?doi=10.1021%2Fnl802558y&iName=master.img-000.jpg&type=master
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A Path for ultimate Scaling of MOSFET

- Self-aligned (n, p) MOSFET
- Advantage for device scaling 

High-K dielectric  EOT = 1nm

Substrate

Metal 
Gate

Graphene: 
• 0.3 nm thick
• maintain high (n,p) mobility
• high channel velocity
• high phonon energy 
• high thermal conductivity (lower Tj)
• High drive current

S D

• Non-alloyed ohmic preferred
• Low ohmic contact Resistance
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Graphite

Graphene Transistor Development Phase

Lemme et al., 
EDL, 2007
Ion/Ioff <  3
FET mobility ~530 cm2/Vs

Gm= 1.4 mS/mm
Wu et al., 2008
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Source
Graphene
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Source

Source
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Graphene

A world’s first
Epitaxial  graphene 
RF-FET
(HRL, Dec, 2008)

A world’s first
2” graphene MOSFET

HRL/NRL
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Epitaxial  graphene RF- 
FET 
gm = 770 mS/mm, 
Ion/Ioff = 33
FET mobility~ 6000 cm2/Vs
(HRL, 2009)

A world’s first
3” graphene-on-Si 

MOSFETs
(HRL, 2009)

75mm 
graphene-on- 
SiC wafer 
(NRL/HRL)

Rapid Growth of Graphene S&T:

2008

2009

2004

Novoselov et al., 
Science, 2004

2007

Epitaxial graphene
Berger et al.,
2004

CERA
June,
2008

Graphene-on-SiC
Graphene-on-Si 2010
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• Epitaxial Graphene layers were grown on 50 and 75 mm diameter 6H-SiC wafers

75mm Wafer-scale Graphene

743 

 

2.7% /sq

75 mm Epitaxial Graphene wafer
50 mm Epitaxial 
Graphene wafer

World’s first Graphene 
MOSFETs on 50 mm 

diameter wafer

World’s first Graphene 
MOSFETs on 75 mm diameter 

wafer

457 

 

6.7% /sq

Sheet resistance map
Sheet resistance map
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Graphene Layer

Map of 2D Raman 
spectrum position

• Using spectral Raman, 22500 sites were analyzed. 
• The nGL was determined by fitting the 2D spectra. 
• The findings were correlated with transmission electron microscopy (TEM).

TEM Analysis 
of graphene

nGL =1

nGL =2

Analysis of 2D 
Raman peaks

Wafer 817

• Raman spectral analysis shows single and bilayer graphene on an entire 2” wafer. 
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Self-aligned Graphene MOSFETs
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Vds = 1V:
Ion = 770 A/m

771 A/m
520 A/m

Vds = 1V:
Ion = 520 A/m

- Self-aligned MOSFET
- Gate dielectric and  metal gate
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Ion/Ioff at Vds = 1 V

• Graphene MOSFETs show an maximum Ion/Ioff of 26 at Vds = 1 V.
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Graphene RF N-MOSFET & P-MOSFET

Vgs = -5 V, 
step = 0.5 V

Vgs = 5 V, 
step = -0.5 V

P-FET N-FET

Graphene p-MOSFET and n-MOSFET are demonstrated
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Graphene (n,p) MOSFET FET Mobility

Graphene MOSFETs show a record peak FET mobility of 9100 cm2/Vs.
FET = (L/W) (gm/Cg ) (1/Vd).

• Demonstrated 10X better FET mobility than that of Si CMOS 

100

1000

10000

-0.5 0 0.5 1

CERA Wafers FET Mobility

FETmob_819
FETmob_822
FETmob_822_2
FETmob_818
Si Univ Mob
FETmob_806
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FETmob_804
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4. Carrier FET Mobility (5000 cm2/Vs)
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770 mS/mm

A long-channel graphene MOSFET with a record gm/Cgs was 
demonstrated.

Long-channel graphene 
MOSFET:
Lg = 3m
Wg = 2x6m
Peak gm = 770 mS/mm at Vds 
= 4 V

Long-channel (Lg = 3m) Graphene MOSFETs show a record 
transconductance of  770 mS/mm at Vds = 4 V. 
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Graphene-on-SiC MOSFETs (2008)

• Demonstrated wafer-scale graphene RF transistors operating in GHz 
domain.

Vds = 6 V, Vgs = -2.5 V

Ft = 4GHz

Fmax
= 14 GHz
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Graphene RF FETs: Wafer = GR0801A
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Devices

Ft = 4GHz
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= 14 GHz

Graphene 
FET #1

Graphene 
FET #2
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Graphene-on-Si technology offer a path toward very large- 
scale of graphene synthesis

Graphene-on-Si Technology Development

A world’s first
2” graphene-on-Si 

MOSFET

A world’s first
3” graphene-on-Si 

MOSFET

HRL/EOC, 2009

 
 
 
 
 
 
 
 
 
 
 
 
 

20 nm 

3 nm 

(a) 

(b) 

Si

3C-SiC

FZ Si (111)

3C-SiC

Graphene-on-Si
graphene
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Ambipolar Graphene-on-Si MOSFETs

0.5

0.7

0.9

1.1

-3 -2 -1 0 1 2 3

EM09087_525078_gm

Id
s 

(m
A

)

Vg (V)

Vds = 1 V

First demonstration of ambipolar (e & h) behaviors from graphene-on-Si
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Graphene 
MOSFET

Si MOSFET GaAs 
PHEMT

InAs

2DEG(1/cm2) 1-10e12 2e12 1.3e12

Idss (A/mm) 0.8 – 3 1 0.5

Hall Mobility 
(cm2/vs)

>20000 1500 5000 26300

Vsat (cm/sec) 4.9e7* 8e6 2e7 3.5e7

Gm (mS/mm) 760 500 2000

K(W/cm-K) 48 1.5 0.54 0.67 (InP)

Ft, fmax 300, 300 
(goal)

350, 120, 223 212, 270

LNA MMICs 86-108 GHz 77 GHz 94 GHz

Receiver-on-chip 
w/ integration 

density

Graphene- 
on-Si 

approach

SiGe 77GHz 
Radar

Need 
baseband 
processing

Need 
baseband 
processing

* Based on gm/Cg

Semiconductor Comparison for Receiver
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Technology Needs for Ultra-Low-power & 
Linear Receiver
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GaP

InP
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InGaAs
InSb

Lattice constant (A)

LNA
Technology

Vds (V) DC power/stage

0.18 um CMOS 1-2 ~9 mW

0.13 um CMOS 0.8-2 ~2-10 mW

InP 1.5 ~11-15 mW

MHEMT 1.4 ~5 mW

AlSb/InAs 0.15 -0.4 0.9 – 2.5 mW

Graphene 0-0.2 tbd

Lower bandgap devices offer low-power LNA operation.
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Device Fmin , Bandwidth, vs. Saturation Velocity
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Fmin = 1 + kfCg [(Rs + Rg )/gm]1/2 ,  fT ~gm/Cg ~Vsat /(2Lg ), 
bandwidth: Rn (noise resistance) ~ [1+(2f*Cg*Rg)2]/gm2

• High-performance LNA requires high Vsat.
• Graphene and ABCS HEMT offer the highest Vsat.
• Reduced Rn  wider bandwidth
• Provide low-noise performance over wider bandwidth

Graphene?

InP 
HEMT

GaAs
PHEMT

90nm
RF CMOS

Si n-MOS

Technology Vsat (cm/s) Bandgap 
(eV)

Si 8x106 1.12

GaAs 2.2x107 1.43

In0.53 Ga0.47 A 
s/InAlAs/InP

2.7x107 0.72

InSb ~5x107 0.18

Graphene ~5x107 0-0.2
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CERA and Linear LNA Figure of Merit 

LNA FOM  = gain*BW/[(NF-1)*Pdc ]
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Question: Would graphene be high-performance linear FET?
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Nonlinear RF: Clean & Efficient Signal Generation 

Device: Ft, fmax, 1/f noise
Multiplier (xN): 10LogN

Phase noise

Phase/Amplitude modulation in Digital Radio, Comm & spread spectrum:
Requirement of phase noise  (QPSK)= -90 dBc/Hz at 100 kHz

Edmar Camargo, Artech House, 1998
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Frequency multipliers

•Spectral control
•Ft, fmax, 
•1/f noise
•Phase noise
•Conversion efficiency
•Bandwidth
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Ultra wideband Spectrally-pure RF Signal 
Generation 
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Graphene shows a feasibility and path for the desired 
signal generation.

RF systems need spectrally-pure ultra-wide band RF/MW/mmW signal generation.
Until now, there are no clear technical implementation approaches.
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Graphene for high-efficient & linear Mixer

• Higher gm near the ambipolar point would offer mixer operation with 
reduced LO power and LO phase noise consequently. 

• Improve mixer efficiency
• Reduce unwanted reciprocal mixing in electronic warfare environments
• Improve phase-noise limited mixer dynamic range

I  (gm) V2 (square-law device)

10
)()(3 dBmLOdBmIPEsys


Mixer efficiency: 

Vgate

Ids

RF_in

High gm

3um long-channel graphene FET
Phase noise = -110 dBc/Hz at 10kHz offset
Carrier-to-noise in 2x = 6 dB (ideal)

Unwanted reciprocal mixing phenomena 
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Graphene Frequency Mixing

Near Dirac point
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Potentially offer high dynamic range in mixing 

No 2f2-f1 present
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Graphene NEMS: Fast & Linear RF Switches 

•Offer a fastest (GHz) RF switch with low 
(1V) actuation voltage. 
•Enable integration with CMOS, III-V ICs.
•Offer an integrated electronic-NEMS.

FET or 
PIN

MEMS Graphene

Insertion 
loss

> 1dB <0.2 dB <0.2 dB

Isolation < 25dB >30 dB >30 dB

Linearity Nonlinear Linear Linear

Speed ~10nS ~uSec ~5nS

Operation 
voltage

a few V 30-70V 1-5V

Reliability High Medium 
(due to 
sticking)

tbd

RF systems such as phased-array-radars need signal routing with 
fast, linear and low-loss capability.
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HRL’s Graphene design2
Air gap = 2.5um
Area = 100x100 um2

k = 0.7 N/m

HRL’s Graphene design1
Air gap = 0.5um
Area = 50x50um2

k= 0.7 N/m

HRL’s design3
Air gap = 0.1um

Analog Device
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Material Field-effect 
Mobility 
(cm2/Vs) 

Thermal 
Conductivity 

(W/mK)

High-speed Cost 
performance

a-Si:H <1 < 5
Pentacene 1.5 0.48 good good

a-In-Ga-Zn-O 6-9 <1
Si nano-membrane poor poor

Graphene 1000 -10000 5000 30-inch good

Table 1. Flexible Electronic Material comparison

Very-large Scale Active Flexible Electronics

Key metrics for active flexible electronics

Flexibility & Large- 
scale

Electronic mobility

Thermal management

Flex graphene 
HRL, 2009
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Very Large Scale Active Flexible Electronics
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III-V

Si

Ultra-thin Si
(ft*lg = 3GHz*um)

Organic film
(ft*lg <3 MHZ*um)

graphene

Fundamental physical limit:
Strain = thickness/(2*radius of 
curvature)

Monolayer-thick graphene can be 
only material form with 4-5 order-of- 
magnitude higher flexibility while 
maintaining high material quality, in 
principle.

Stretchable Si
Univ. of Illinois

Tx

LNA

Rx
HRL’s sensor 
RF tag on PCB

Graphene
Samsung, 2010
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Some other applications

• EMI
• Non-volatile memory
• Cooling
• Harsh environment
• THz
• Thermoelectric
• Chem sensors
• Bioelectronics

Potential Applications of Graphene
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Graphene as Emerging Material
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