

ROYAL INSTITUTE OF TECHNOLOGY

Graphene Process and Device Options for Microelectronics Applications

Max Lemme

KTH Royal Institute of Technology School of Information and Communication Technology lemme@kth.se

Acknowledgement / Collaborators

ROYAL INSTITUTE OF TECHNOLOGY **KTH** Jiantong Li Mikael Östling Saul Rodriguez Ana Rusu Anderson Smith Sam Vaziri

Harvard

David Bell Frank Koppens Charles Marcus

MIT

Leonid Levitov Mark Rudner

UPC Barcelona

Eduard Alarcon

IHP

Jarek Dabrowski Gunther Lippert Grzegorz Lupina Wolfgang Mehr Christoph Scheytt

ROYAL INSTITUTE

Graphene: Exceptional Properties (1/2)

Electronic properties

- Semi-metal or zero-gap semiconductor
- Linear dispersion relation
- Massless dirac fermions, v ~ c/300
- Intrinsic carrier mobility (suspended graphene in vacuum) $\mu = 200.000 \text{ cm}^2 \text{ V}^{-1}\text{s}^{-1}$
- Carrier mobility of graphene on SiO₂ at room-temperature $\mu = 10.000-20.000$ cm² V⁻¹s⁻¹ (speed ~ I_{on} ~ μ)
- Maximum current density

 $J > 10^8 \text{ A/cm}^2$

Velocity saturation

 $v_{sat} = 5 \times 10^7 \text{ cm/s} (10 \times \text{Si}, 2 \times \text{GaAs})$

ROYAL INSTITUTE OF TECHNOLOGY

Exceptional Properties (2/2)

Optical properties

Linear dispersion relation

Mechanical properties

- Young's modulus: ~ 1.10 TPa (Si ~ 130 GPa)
- Flexible, elastically stretchable by 20%
- "strongest material known"

Thermal conductivity

~5.000 W/m•K at room temperature Diamond: ~2000 W/m•K, 10 x higher than Cu, Al

Transparent (only 1 atom thin)

Transparent flexible conductive electrodes

High surface to volume ratio

Sensors

Lee et al., Science, 385-388, 18 July 2008

Device and Process Options for Graphene

Outline

- Process Options
 - **Deposition & Growth**
- Graphene-based Transistors
- Applications beyond "Moore's Law"
- Summary

Graphene Fabrication Methods: Exfoliation

- Novoselov et al., Science 306, 666 (2004)
- flake size: $5 100 \ \mu m$
- random location
- simple process for proof-of-concept
- no industrial relevance

6

Graphene Fabrication Methods: Dispersions

ROYAL INSTITUTE OF TECHNOL

Graphene thin films from solution

- Transparent & conductive
- Inkjet-printable

Li, Lemme, Ostling, Carbon, 2012

Graphene Fabrication Methods: Epitaxy

Thermal decomposition of SiC (epitaxial graphene)

ROYAL INSTITUTE OF TECHNOLOGY

- Berger et al., J. Phys. Chem. B 108, 2004
- limited scalability
- high temperatures (~1500°C)
- high cost of material
- monolithic integration

Alternative approach: SiC growth on Silicon

- scalable
- modest temperatures
- (<1000°C)
- Silicon Technology
- compatible

Graphene Fabrication Methods: CVD

Chemical Vapor Deposition (CVD)

ROYAL INSTITUTE OF TECHNOLOGY

- CVD on Ni, Cu, Ru, Ir, TiC, TaC, etc.
- Process Temperatures: 850-1000°C
- Graphene transfer to random substrates
- Monolayer vs. multilayer control (solubility)
- High potential for large areas (roll to roll production)

Cao et al, Applied Physics Letters 96, 122106 (2010) 31 May 2012 Graphene Process and Device Options for Microelectronics Applications NanoTec-Workhop M. Lemme

Graphene Fabrication: Molecular Beam Growth

direct deposition on anything

- "holy grail"
- to date: small flakes < 1 μ m
- high risk high payoff

G. Lippert et al., "Direct graphene growth on insulator", Phys. Status Solidi B 248, No. 11, 2619–2622 (2011)

Increasing interest:

- J. Kelber et al, "Direct Graphene Growth on Oxides: Interfacial Interactions and Band Gap Formation", (2011)
- U. Wurstbauer, R. He, A. Rigosi, C. Gutierrez, A. Pasupathy, T. Schiros, C. Jaye, D. Fischer, A. Plaut, L.N. Pfeiffer, A. Pinczuk, J.; Garcia, arXiv:1202.2905v1 (2012)
- S.K. Jerng, D. Yu, Y.S. Kim, J. Ryou, S. Hong, C. Kim, S. Yoon, D.K. Efetov, P. Kim, S. Chun, Journal Physical Chemistry C, 115, 4491–4494, (2011).

Device and Process Options for Graphene

Outline

- **Process Options**
 - **Process Integration**
- Graphene-based Transistors
- Applications beyond "Moore's Law"
- Summary

Silicon MOSFET

ROYAL INSTITUTE OF TECHNOLOGY

Source: TU Delft

Graphene Devices:

Graphene Technology

Graphene MOSFET

Lemme et al. "A Graphene Field Effect Device", IEEE Electr. Dev. Lett. 28(4), 2007.

- Silicon process technology can be applied ("Top-Down")
- Graphene is compatible with (most) standard processes
- Scalable graphene deposition methods emerging (CVD, epitaxy)
- ...Graphene MOSFET (GFET)?

Graphene Transistors:

- Ambipolar behaviour (n- und p-type conduction)
- I_{on}/I_{off} ratio inherently limited by band structure (semimetall)
- NOT a direct replacement for Silicon logic, BUT...
- RF analog / higher functionality / new functionality?!

Interface Engineering

Reality check: what about gate oxides?

Data: Lemme et al. IEEE EDL, 28(4), 2007

Interface Engineering

Mobility reduced by top gate oxide

"Charged Impurity Scattering" Model: Minimum conductivity and Dirac point shift through charges "near" Graphene / oxide interface

$$u_C = \frac{5 \times 10^{15} Vs}{n_{imp}}$$

Electron – hole asymmetry not included in Adam-Model

"Carrier Injection" model:

Carrier injection limited by contacts

"Long Range Scatterer" Model:

selective limit for ONE carrier type

15

Graphene Transistors: Fundamental Limits

Graphene Transistors: Contacts

Contact resitance needs to be improved

Graphene for post CMOS Applications

Outline

- Introduction
- Graphene-based Transistors
 - **RF Graphene FETs**
- Applications beyond "Moore's Law"
- Summary

ROYAL INSTITUTE

OF TECHNOLOGY

Graphene: RF Transistors

RF Graphene Transistors

- Exploiting high carrier mobility / velocity
- High on/off ratio not required

Development of cut-off frequency f_T (12/2008-09/2010)

Graphene: RF Transistors

Performance Projections

Refined model after: **Adding 201** Thiele et al., J. Appl. Phys., 2010

Performance Projections

ROYAL INSTITUTE OF TECHNOLOGY

VGS (V)

31 May 2012

VGS (V)

gm (mS)

Graphene: RF Transistors

Performance Projections

- $F_{T,MAX}$ of GFET almost as high as Si-CMOS at $I_{DS} = 1\mu A$
- Si-CMOS $F_{T,MAX}$ at higher current consumption than GFET $F_{T,MAX}$
- Superior mobility in GFETs NOT sufficient to provide higher performance than Si-MOSFETs
- GFETs achieve best performance in rather narrow I_{DS} range
- "Dead zone" for GFET amplifiers

Rodriguez et al., arxiv 2011

Graphene: RF Transistors

Performance Projections

 $GFET_{FT,MAX}$ vs. Mobility for L = 65 nm, T_{OX} = 2.6 nm, and ε_r = 3.9

Graphene for post CMOS Applications

Outline

- Introduction
- Graphene-based Transistors
 - Hot Electron Transistors
- Applications beyond "Moore's Law"
- Summary

Graphene Base Transistors: GBT

A new proposal: Graphene Base Transistor - GBT

- "Hot Electron" transistor
- Charge carriers are transported perpendicular to the graphene sheet
- Operation depends on quantum mechanical tunnelling
- Speed limit set by transport through base (here: 0.35nm monolayer!)

Graphene Base Transistors: GBT

ROYAL INSTITUTE OF TECHNOLOGY

Biased

tunneling

d)

Unbiased

Graphene Base Transistors: GBT

ROYAL INSTITUTE OF TECHNOLOGY

W. Mehr et al, IEEE EDL, 33(5), 2012

- Estimated transfer (b) and output (c) behavior
- Off-state expected to be well below on-state
- Current saturation
- Band structure needs careful engineering

ROYAL INSTITUTE OF TECHNOLOGY

Graphene Base Transistors: GBT Performance Projections

RF performance of a high power GBT

Graphene for post CMOS Applications

Outline

- Introduction
- Graphene-based Transistors
- Applications beyond "Moore's Law"
 - Optoelectronics
- Summary

Graphene Optoelectronics

- E-k linear up to +- 1eV
- Potential from visible spectrum to THz
- High data rates (high carrier mobility)

- a) Wavelength-independent absorption in single layer graphene
- b) Broadband photodetection in graphene (including THz)
- c) Surface plasmon generation in graphene

ROYAL INSTITUTE

OF TECHNOLOGY

Graphene: Photodetection

Graphene Photodetectors: Local Tunability

Lemme, Koppens, et al. "Gate Controlled Photocurrent in a Graphene p-n Junction", Nano Letters, 11, 2011.

ROYAL INSTITUTE OF TECHNOLOGY

- Strong photoresponse in pn junction
- Weak photoresponse in similar carrier gradient (nn' or pp')

Graphene: Photodetection

31 May 2012 Graphene Process and Device Options for Microelectronics Applications NanoTec-Workhop

Graphene: Photodetection

- Strong contribution from Seebeck effect (pnjunction required) -> Bolometers
- Local control of p-n junction allows on-off control of photodetection
- Scalability to submicron gates and potential to integrate into existing platforms
- Potential for UV to THz applications, but competing effects are not identified for whole spectrum
- Plasmonics:
 - Echtermeyer et al., "Strong plasmonic enhancement of photovoltage in graphene", Nature Communications 2, 458 (2011)
 - Koppens et al., "Graphene plasmonics: a platform for strong light-matter interactions.," Nano Letters, 11(8), 2011

Graphene Optoelectronics

OF TECHNOLOGY

Graphene photodetectors for highspeed optical communications

- Metal graphene interface induces pn-junction
- Control through back gate (substrate)
- Graphene "Eye Diagram"
- Error free optical data transmission at 10 Gbit/s

Graphene for post CMOS Applications

Outline

- Introduction
- Graphene-based Transistors
- Applications beyond "Moore's Law"
 - NEMS
- Summary

Graphene NEMS

ROYAL INSTITUTE OF TECHNOLOGY

NEMS

Lee et al., Science, 385-388, 18 July 2008

Source: A. Bachtold

- Young's modulus: ~1.10 TPa (Si ~ 130 GPa)
- Elastically stretchable by 20%
- High mechanical stability
- "strongest material known"
- Flexible
- Low mass

Graphene based mass, force, pressure sensors

Graphene NEMS

Concept: Piezoresistive Detector

ROYAL INSTITUTE OF TECHNOLOGY

a)

E(K)

- Combinations of strain lead to band gaps up to 1 eV.
- Small strain will shift the Dirac point and therefore change the DOS
- This will in turn change the resistance
- Pressure gauge: Deflection due to pressure difference causes strain

Graphene for post CMOS Applications

Outline

- Introduction
- Graphene-based Transistors
- Applications beyond "Moore's Law"

Summary

- ROYAL INSTITUTE OF TECHNOLOGY
 - Graphene is a "Serious" Electronic Material
 - Large Area Manufacturing Available
 - Electronic Applications
 - Analog Transistors
 - GBTs
 - Optoelectronics (e.g. Photodetector)
 - NEMS (e.g. Pressure Sensor)
 - Printable Electronics

Graphene: Research Topics

- ROYAL INSTITUTE OF TECHNOLOGY
- Interconnects
- Passives, Antennas
- Plasmonics
- Supercapacitors
- Transparent Electrodes
- Mechanical Applications (avionics, car industry)
- Chemical / Biosensors (Functionalized Surfaces)
- Resistive Switching (Memory Applications)
- Ballistic Devices
- Spintronics (Spin-Valves, SpinMOSFET, SpinFET)
- ... other 2D Materials (h-BN, MoS₂...)

Thank you for your attention!