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Electronic properties 
•  Semi-metal or zero-gap semiconductor 

•  Linear dispersion relation 

•  Massless dirac fermions, v ~ c/300 
•  Intrinsic carrier mobility (suspended graphene in vacuum) 

  µ = 200.000 cm2 V-1s-1  
•  Carrier mobility of graphene on SiO2 at room-temperature 

  µ = 10.000-20.000  cm2 V-1s-1 (speed ~ Ion ~ µ) 

•  Maximum current density 
  J > 108 A/cm2 

•  Velocity saturation 

 vsat = 5 x 107 cm/s (10 x Si, 2 x GaAs) 

Graphene: Exceptional Properties (1/2) 
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Optical properties 
•  Linear dispersion relation 
Mechanical properties 
•  Young’s modulus: ~1.10 TPa (Si ~ 130 GPa)  
•  Flexible, elastically stretchable by 20% 
•  ”strongest material known” 
Thermal conductivity  
•  ∼5.000 W/m•K at room temperature  

 Diamond: ∼2000 W/m•K, 10 x higher than Cu, Al 

Transparent (only 1 atom thin) 
 Transparent flexible conductive electrodes 

High surface to volume ratio 
 Sensors  

 
 

Exceptional Properties (2/2) 

Lee et al., Science, 385-388, 18 July 2008 
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Device and Process Options for Graphene 

Outline 

•  Process Options 

•  Deposition & Growth 

•  Graphene-based Transistors 

•  Applications beyond ”Moore’s Law” 

•  Summary 
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80  μm	

20  μm	



•  Novoselov et al., Science 306, 666 (2004) 
•  flake size: 5 – 100 µm 
•  random location 
•  simple process for proof-of-concept 
•  no industrial relevance 

Exfoliation with adhesive tape 

Graphene Fabrication Methods: Exfoliation 

Silicon 
Wafer 

Graphite 

Tape 

Chips 

31 May 2012 Graphene Process and Device Options for Microelectronics Applications        NanoTec-Workhop       M. Lemme 6 



•  Graphene thin films from solution 
•  Transparent & conductive 
•  Inkjet-printable 

Li, Lemme, Ostling, Carbon, 2012 

Graphene Fabrication Methods: Dispersions 
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•  Berger et al., J. Phys. Chem. B 108,  2004  
•  limited scalability 
•  high temperatures (~1500°C) 
•  high cost of material 
•  monolithic integration 

Kedzierski et al., IEEE TED, 2008 

Thermal decomposition of SiC (epitaxial graphene) 

Optical image 

Alternative approach: SiC growth on Silicon 

Source: Infineon 

•  scalable 
•  modest temperatures 
(<1000°C) 
•  Silicon Technology 
compatible 

Graphene Fabrication Methods: Epitaxy 
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•  CVD on Ni, Cu, Ru, Ir, TiC, TaC, etc. 
•  Process Temperatures: 850-1000°C 
•  Graphene transfer to random substrates 
•  Monolayer vs. multilayer control (solubility) 
•  High potential for large areas (roll to roll production) 
 

Cao et al, Applied Physics Letters 96, 122106 (2010) 

Graphene on Copper    ->                PMMA               ->                 Silicon 

Chemical Vapor Deposition (CVD) 
Graphene Fabrication Methods: CVD 
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80  μm	

20  μm	



•  direct deposition on anything 
•  „holy grail” 
•  to date: small flakes < 1 µm 
•  high risk – high payoff 

Graphene Fabrication: Molecular Beam Growth 

Increasing interest: 
•  J. Kelber et al, “Direct Graphene Growth on Oxides: Interfacial Interactions and Band Gap Formation“, (2011) 
•  U. Wurstbauer, R. He, A. Rigosi, C. Gutierrez, A. Pasupathy, T. Schiros, C. Jaye, D. Fischer, A. Plaut, L.N. 

Pfeiffer, A. Pinczuk, J.; Garcia, . arXiv:1202.2905v1 (2012) 
•  S.K. Jerng, D. Yu, Y.S. Kim, J. Ryou, S. Hong, C. Kim, S. Yoon, D.K. Efetov, P. Kim, S. Chun, Journal Physical 

Chemistry C, 115, 4491–4494, (2011). 

G. Lippert et al., “Direct graphene growth on insulator“, 
Phys. Status Solidi B 248, No. 11, 2619–2622 (2011) 
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Device and Process Options for Graphene 

Outline 

•  Process Options 

•  Process Integration 

•  Graphene-based Transistors 

•  Applications beyond ”Moore’s Law” 

•  Summary 
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Graphene Technology 

Source: TU Delft 

Silicon MOSFET            Graphene MOSFET 

Graphene Devices: 
§  Silicon process technology can be applied („Top-Down“) 
§  Graphene is compatible with (most) standard processes 
§  Scalable graphene deposition methods emerging (CVD, epitaxy) 
§  …Graphene MOSFET (GFET)? 
 

Lemme et al. ”A Graphene Field Effect Device”, 
IEEE Electr. Dev. Lett. 28(4), 2007. 
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p-type n-type 

Graphene Transistors: Transfer Characteristics 

~2 x 
(compare Silicon: 
> 1.000.000 x) 

	


Silicon	



SiO2	



graphene	

Vs = 0 V	

 Vd	



Vbg	



“On”-current 

“Off”-current 

Silicon MOSFET Graphene MOSFET 
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Graphene Transistors: 
§  Ambipolar behaviour (n- und p-type conduction) 
§  Ion/Ioff ratio inherently limited by band structure (semimetall) 
§  NOT a direct replacement for Silicon logic, BUT... 
§  ... RF analog / higher functionality / new functionality?! 
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Reality check: what about gate oxides?  
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SiO2	



graphene	



	


Silicon	


SiO2	



Reduction of current by factor of ~5 

graphene	



Interface Engineering 

31 May 2012 

§  Top-Gate dielectric disturbs p-Orbitals 
§  Charegd impurity scattering (Adam et al. PNAS 104(47), 2009) 

Lemme et al., IEEE Electr. Dev. Lett. 28(4), 2007. 
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Without Oxide: 
nimp ~2 x 1012 cm-2 

 

with Oxide: nimp ~ 6 x 1012 cm-2 

Mobility reduced by top gate oxide 

„Charged Impurity Scattering“ Model: 
Minimum conductivity and Dirac point 
shift through charges „near” Graphene / 
oxide interface 

 

 

Electron – hole asymmetry not included in 
Adam-Model 

“Carrier Injection” model: 

 Carrier injection limited by contacts 

“Long Range Scatterer” Model: 

 selective limit for ONE carrier type  

  

 

Farmer et al. Nano Lett. 9(1), 2009	



Model: Adam et al. PNAS 104(47), 2009 
Data: Lemme et al. IEEE EDL, 28(4), 2007 

imp
C n

Vs15105×
=µ

Interface Engineering 
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Chen 2008:	



Bolotin 2008:	



RT	



Corrugations 
 
Longitudinal Acoustic Phonons 
(µRT,max ~ 200.000 cm2/Vs)  
 
SiO2 Surface Phonons 
(µRT,max ~ 40.000 cm2/Vs)  
 
Charged impurities 
(µRT,max ~ 10.000 cm2/Vs) 
(Oxide, interface, molecules?) 
 
Crystal defects 
CVD Graphene! 

Mobility limited by scattering by: 

After: Chen et al. Solid State Comm., 2009 

Graphene Transistors: Fundamental Limits 

Silicon 
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Field Effect Mobility µ 

Lemme et al. Solid St. Electr. 2008 

Graphene Transistors: Contacts 

Typical values on the order of 1 kOhm 

Contact resitance needs to be improved 
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Contact resistance and VDS 



Graphene for post CMOS Applications 

Outline 

•  Introduction 

•  Graphene-based Transistors 

•  RF Graphene FETs 

•  Applications beyond ”Moore’s Law” 

•  Summary 
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RF Graphene Transistors 
•  Exploiting high carrier mobility / velocity 

•  High on/off ratio not required 

Graphene: RF Transistors 

Today: 300 GHz!!! 

Improvement due 
to interface 
engineering 

Lemme, Sol. St. Phenom., 2010 

Development of cut-off frequency fT  (12/2008-09/2010) 
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Performance Projections 
L = 65 nm	


Tox = 2.6 nm	


W = 10 mm	


µ = 2500 cm2/Vs	



L = 1 µm	


Tox = 30 nm	


W = 10 µm	


µ = 2500 cm2/Vs	



Graphene: RF Transistors 

Refined model after: 
Meric et al.,Nature Nanotech 2008 
Thiele et al., J. Appl. Phys., 2010 

Rodriguez et al., arxiv, 2011 
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Rodriguez et al., arxiv 2011 

Graphene: RF Transistors 
Performance Projections 

CG =W
Cox−top ⋅Cq V( )
Cox−top +Cq V( )

dV
0

VDS∫
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FT =
1
2π

gm
CG

•  FT,MAX of GFET almost as high as 
Si-CMOS at IDS = 1µA 

•  Si-CMOS FT,MAX at higher current 
consumption than GFET FT,MAX 

•  Superior mobility in GFETs NOT 
sufficient to provide higher 
performance than Si-MOSFETs 

•  GFETs achieve best performance in 
rather narrow IDS range 

•  “Dead zone” for GFET amplifiers 

65nm GFET vs. Si-MOSFET 

Rodriguez et al., arxiv 2011 

Graphene: RF Transistors 
Performance Projections 

VDS = 1.2 V 
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Performance Projections 

GFETFT,MAX vs. Mobility for L = 65 nm, TOX = 2.6 nm, and εr = 3.9 

THz operation seems feasible for high mobility graphene 
à Graphene/insulator interface engineering 
à High quality CVD (or other) growth technique 

Graphene: RF Transistors 

Rodriguez et al., arxiv 2011 
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Graphene for post CMOS Applications 

Outline 

•  Introduction 

•  Graphene-based Transistors 

•  Hot Electron Transistors 

•  Applications beyond ”Moore’s Law” 

•  Summary 
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Graphene Base Transistors: GBT 
A new proposal: Graphene Base Transistor - GBT 

•  “Hot Electron” transistor 
•  Charge carriers are transported perpendicular to the graphene sheet  
•  Operation depends on quantum mechanical tunnelling 
•  Speed limit set by transport through base (here: 0.35nm monolayer!) 
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W. Mehr et al, IEEE EDL, 33(5), 2012 



Graphene Base Transistors: GBT 

90° 

Unbiased Biased 
W. Mehr et al, IEEE EDL, 33(5), 2012 
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!

!

Graphene Base Transistors: GBT 

•  Estimated transfer (b) and output (c) behavior 
•  Off-state expected to be well below on-state 
•  Current saturation 
•  Band structure needs careful engineering 

W. Mehr et al, IEEE EDL, 33(5), 2012 
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Graphene Base Transistors: GBT 

THz Operation 
seems feasible 
 !

Performance Projections 

W. Mehr et al, IEEE EDL, 33(5), 2012 
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Graphene for post CMOS Applications 

Outline 

•  Introduction 

•  Graphene-based Transistors 

•  Applications beyond ”Moore’s Law” 

•  Optoelectronics 

•  Summary 
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•  E-k linear up to +- 1eV 
•  Potential from visible spectrum to THz 
•  High data rates (high carrier mobility) 

Graphene Optoelectronics 

a)  Wavelength-independent absorption in single layer graphene 
b)  Broadband photodetection in graphene (including THz) 
c)  Surface plasmon generation in graphene 
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Graphene: Photodetection 

Lemme, Koppens, et al. “Gate Controlled Photocurrent in a Graphene p-n Junction”, Nano Letters, 11, 2011.  

Graphene Photodetectors: Local Tunability 
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Graphene: Photodetection 

•  Strong photoresponse in pn 
junction 

•  Weak photoresponse in similar 
carrier gradient (nn’ or pp’) 
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•  Strong contribution from Seebeck effect (pn-
junction required) -> Bolometers 

•  Local control of p-n junction allows on-off control of 
photodetection 

•  Scalability to submicron gates and potential to 
integrate into existing platforms 

•  Potential for UV to THz applications, but competing 
effects are not identified for whole spectrum 

•  Plasmonics: 
•  Echtermeyer et al., “Strong plasmonic 

enhancement of photovoltage in graphene”, 
Nature Communications 2, 458 (2011) 

•  Koppens et al., “Graphene plasmonics: a 
platform for strong light-matter interactions.,” 
Nano Letters, 11(8), 2011 

Graphene: Photodetection 

Lemme et al., Nano Letters 2011 
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Graphene Optoelectronics 

Mueller et al., Nat. Photonics 2010 

•  Metal – graphene interface induces pn-junction 
•  Control through back gate (substrate) 

Graphene photodetectors for high-
speed optical communications 

•  Graphene ”Eye Diagram” 
•  Error free optical data transmission at 10 Gbit/s 

31 May 2012 
Graphene Process and Device Options for Microelectronics Applications        NanoTec-

Workhop       M. Lemme 34 



Graphene for post CMOS Applications 

Outline 

•  Introduction 

•  Graphene-based Transistors 

•  Applications beyond ”Moore’s Law” 

•  NEMS 

•  Summary 
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Lee et al., Science, 385-388, 18 July 2008 

Graphene NEMS 

Graphene based mass, force, pressure sensors 

NEMS •  Young’s modulus: ~1.10 TPa (Si ~ 130 GPa)  
•  Elastically stretchable by 20% 
•  High mechanical stability 
•  ”strongest material known” 
•  Flexible 
•  Low mass 
 

Source: A. Bachtold A. Smith, ULIS 2012 
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•  Combinations of strain lead to band gaps up to 1 eV.  
•  Small strain will shift the Dirac point and therefore change the DOS 
•  This will in turn change the resistance 
•  Pressure gauge: Deflection due to pressure difference causes strain 

Graphene NEMS 
Concept: Piezoresistive Detector 

A. Smith, ULIS 2012 
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Graphene for post CMOS Applications 

Outline 

•  Introduction 

•  Graphene-based Transistors 

•  Applications beyond ”Moore’s Law” 

•  Summary 
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• Graphene is a “Serious” Electronic Material 
• Large Area Manufacturing Available 

• Electronic Applications 

• Analog Transistors 

• GBTs  

• Optoelectronics (e.g. Photodetector) 

• NEMS (e.g. Pressure Sensor) 

• Printable Electronics 

Summary 

31 May 2012 Graphene Process and Device Options for Microelectronics Applications        NanoTec-Workhop       M. Lemme 39 



Graphene: Research Topics 
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• Interconnects 

• Passives, Antennas 

• Plasmonics 
• Supercapacitors 

• Transparent Electrodes 

• Mechanical Applications (avionics, car industry) 
• Chemical / Biosensors (Functionalized Surfaces) 
• Resistive Switching (Memory Applications) 
• Ballistic Devices 
• Spintronics (Spin-Valves, SpinMOSFET, SpinFET) 
• …other 2D Materials (h-BN, MoS2…) 

Thank you for your attention! 


