European Nanoelectronics ENI2 Infrastructure for Innovation

Raisons d'être & Objectives

G.Casanova L. Baldi

An increasing gap

Industry-oriented technology research

FP7-8

Moving towards speculative research

ENIAC JTI

Moving towards products and applications

Bad utilization of available funding

ENIAC JU Budget Consumption

Source: ENIAC JU

ŝ

W ho helps

A Wild European Nanoelectronic Forum Madrid, 16/17 Nov 2010

European Nanoelectronics Infrastructure for Innovation

• What?

- ENI2 is an initiative supported by a « core group » aiming to propose new way of thinking collaborative projects to overcome the disruptive challenges to be faced by the micro/nano industry.
- ENI2 is not a new instrument but a methodology to contribute to the implementation of the VMS and the SRA.

• Why?

- To improve the innovation cycle by closing the gap between advanced research and industrial needs
- To set-up a durable Multi-disciplinary Research Infrastructure.
- To create wider externalities

Objectives

To:

- Rationalize the R&D activities in order to maximize the efficiency of the funding allocated.
- Improve the timely selection of ideas.
- Benchmark the various technological solutions proposed and to perform an early evaluation of their cost effectiveness.
- Offer a continuity of partnership during the whole execution of a roadmap/vision.
- Insure a European scope to research in Nanoelectronics, overcoming cross-border funding problems.

A THREE LEVEL STRUCTURE

In nanoelectronics, a successful innovative infrastructure will rely to a three R&D levels organization

ACADEMIC LABORATORIES

• Basic understanding, test and validation of innovative architectures, materials and processes in order to identify the most promising topics for future ICT

INSTITUTES (Integration Centers)

• Technology implementation and performance assessment on R&D equipments ; development of high performance Logic, Memories, Derivative, Power devices

INDUSTRIALISTS

 Technology exploitation as functional product, process optimization, yield, product reliability, device and interconnect architecture and design

Four strategic Programs domains....as a starting point

Synergies and Wider externalities

Action Plan

- Full support by AENEAS obtained
- Domain coordinators selected
- To apply to the strategic domains:
- Kick-off meeting:
 - Agree on the objectives and areas of collaboration.
 - Draw-up a preliminary list of contributors.
 - Propose a set of priorities and associated tentative time delivery
- Specific meetings by strategic domains organized by Domain leaders and co leaders during Feb./March 2011, to:
 - Formalize the contribution by research level
 - Issue a technical agenda covering the 2012-2020 period with key milestones and estimated resources.
 - Set-out a European ecosystem (cartography) by strategic domain
- To consolidate the different strategic domains April 2011
 ENI2 proposal April 2011

Mid. January Feb 3 Thank you

Back Up slides

Leading the strategic domains

For each Strategic Domain a binome (leader/co-leader) has been formed and the basis for cooperation has been discussed.

•	Nanoscale FET:	F.Balestra	Sinano Institute
		G.Thomas	ST
•	Smart Energy :	W. Dettmann	Infineon
		(TBN)	ST
•	3D Integration	J.Stephan	FHG
		A.Bouffioux	NXP
•	Smart sensors	R.Zafalon	ST
		XXXX	XXXX

Core Group

SINTEF

SINANO

CNM

ST

Leti

STUBA

FMNT

FHG

STE

TYNDALL

EC (observer)

FZ-JÜLICH

• AVSET Berit-Sundby	
----------------------	--

- BALESTRA Francis
- **BAUSELLS** Joan*
- **BRILLOUET** Michel
- CASANOVA Gilles
- **DONOVAL** Daniel
- **GRÜTZMACHER** Detlev
- MOUIS Mireille
- O'NEILL Brendan
- **STEPHAN** Joerg
- **ROESEMS** Gisele
- **ROUSSET** Denis
- SCHELLENBERGER Martin FHG

•	THOMAS Dominique	ST
•	KILCHYTSKA Valeria	UCL Louvain_
•	LAUWERS Lode	IMEC
•	LEHNER Norbert	IFX
•	MATHERON Gerard	ST
•	MORAND Jean-Luc	ST
•	MODH Peter	CHALMERS
•	ROUZAUD Andre	Leti
•	THOMAS Gilles	ST
•	THOMAS Dominique	ST
•	TSOUKALAS Dimitris	DEMOKRITOS
•	Van der ZON Ben	TNO
•	VANDEN BULCKE Mathieu	UCL Louvain
•	WHATMORE Roger	TYNDALL

Improve the selection of technological options

Technological innovation is a highly uncertain process. A portofolio of options have to be supported

Expected impact

- Speed-up the innovation process
- World class infrastructures
- Structured R&D collaborative approach
- Academic-industry cooperation Europe-wide
- Reinforcing the Regional/European ecosystems
- Improving knowledge transfer between public research and industry
- Better visibility to attract other partners (including SMEs)
- Structural Funds support
- Wider externalities (Manufacturing support Education & Training- International cooperation)

Motivations

- The excellent European scientific knowledge fails to convert into industrially exploited products. The migration path from FUNDAMENTAL SCIENCE to APPLIED SCIENCE to TECHNOLOGY to PRODUCT and its VOLUME MANUFACTURING is somewhat broken or too long.
- Lack of European strategic objectives
- European R&D efforts are duplicated by different policies at national level and cultural diversity amplified by an artificial separation between different research horizons
- CMOS scaling down is generating explosive R&D cost and More than Moore and 3D integration are creating explosive multidisciplinary R&D complexity.

The impact and the success of ENI2 will depend largely on well-focused joint R&D objectives, well-formalized and structured governance, effective long range planning and supportive PAs and requires changes to the Council regulations.

ENI2 positionning: ENIAC / CATRENE

SUPRANATIONALITY

SUBSIDIARITY

INFRASTRUCTURES STRATEGIC TECHNOLOGICAL DOMAINS

Nanoscale FET, 3D heterogeneous integration, smart power.....

APPLICATIONS PAN EUROPEAN INTEREST

Advanced LTE, Smart power grid, smart systems, devices for electrical/hybrid cars

> INTEGRATION PROCESSES APPLICATIONS