edaWorkshop12

"NANO-TEC: Building Bridges Between Beyond CMOS Technologies and Design"

Dr. Ir. Isabelle Ferain

Tyndall National Institute University College Cork

NAND-TEC has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257964

Agenda

About NANO-TEC

- Objectives
- Activities
- Timeline

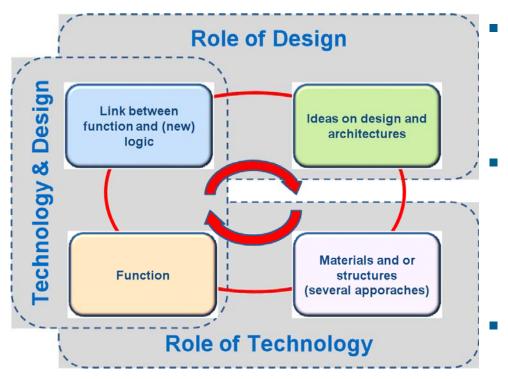
'Beyond CMOS' devices

- Taxonomy
- Motivation
- Benchmarking Methodology
- Building Bridges
 - Molecular Electronics
 - Nanowire Transistors
 - Switching Memristors
 - Graphene Transistors
- Conclusion

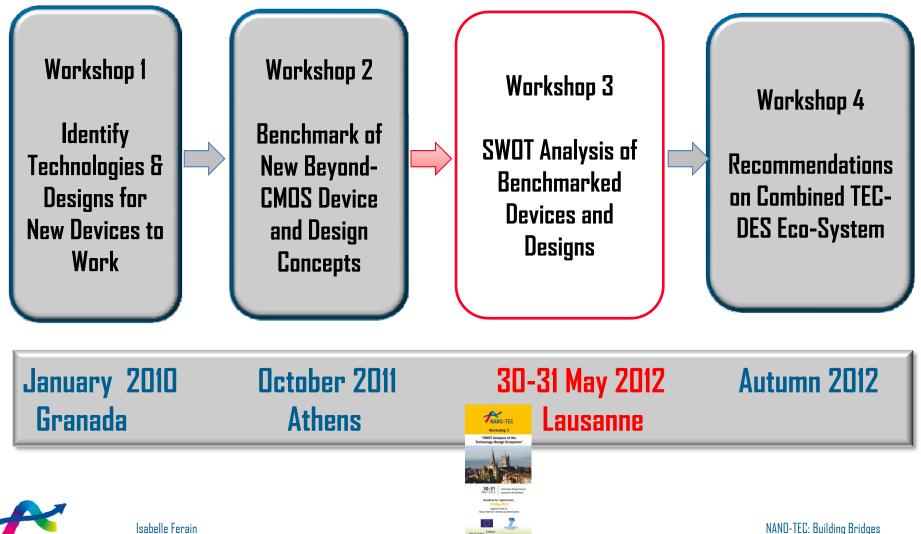
Agenda

About NANO-TEC

- Objectives
- Activities
- Timeline
- Beyond CMOS' devices
 - Taxonomy
 - Motivation
 - Benchmarking Methodology
- Building Bridges
 - Molecular Electronics
 - Nanowire Transistors
 - Switching Memristors
 - Graphene Transistors
- Conclusion


About NANO-TEC: Objectives

- To identify the next generation of (emerging) device concepts and technologies for ICT.
- To build a joint technology-design community to coordinate research efforts in nano-electronics.

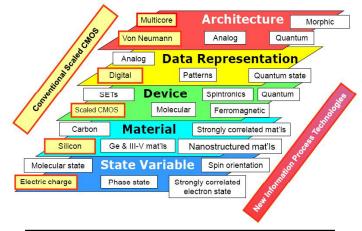

About NANO-TEC: Activities

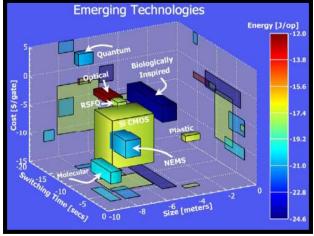
- 4 workshops with invited experts on Beyond CMOS devices, benchmarking and a SWOT analysis of new devices.
- A state-of-the-art web platform for working groups, enabling discussions fora, meetings, communications and access to an information repository.
- A report on Emerging Nanoelectronics.

About NANO-TEC: Timeline

O-TFC

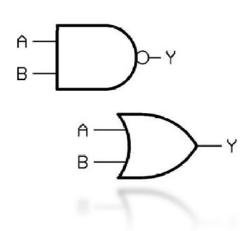
Tyndall National Institute, University College Cork


Agenda

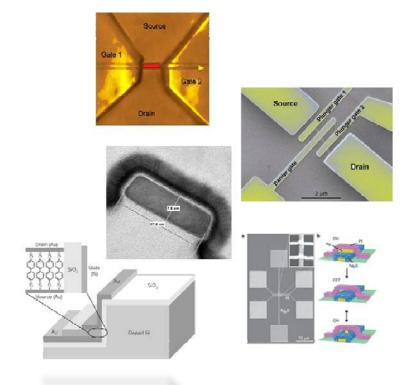

- About NANO-TEC
 - Objectives
 - Activities
 - Timeline
- 'Beyond CMOS' devices
 - Taxonomy
 - Motivation
 - Benchmarking Methodology
- Building Bridges
 - Molecular Electronics
 - Nanowire Transistors
 - Memristors
 - Graphene
- Conclusion

"Beyond CMOS" technologies: Taxonomy

 New information processing devices and architectures

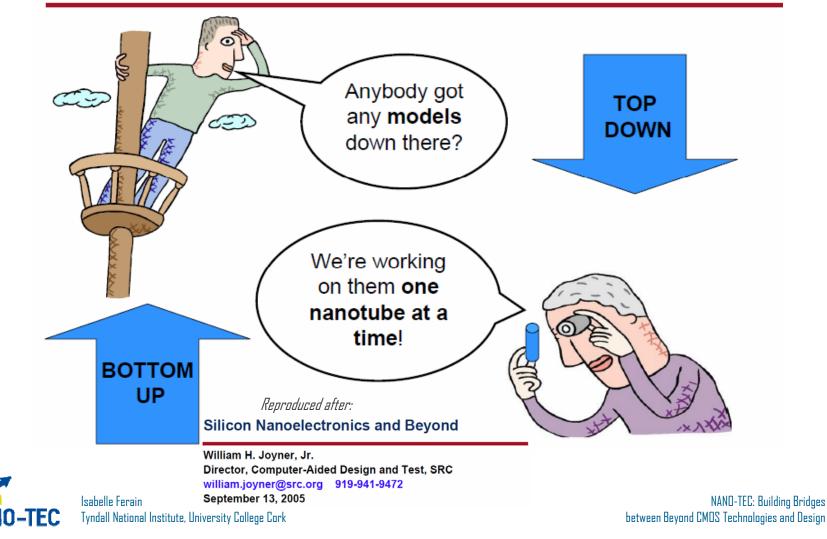


(Reproduced after ERD ITRS) Isabelle Ferain Tyndall National Institute, University College Cork


- Nano-Electro Mechanical Switches
- Collective Spin Devices
- Spin Torque Transfer Devices
- Atomic Switch / Electrochemical Metallization
- Carbon-based Nanoelectronics
- Single Electron Transistors
- CMOL / Field Programmable Nanowire Interconnect (FPNI)

"Beyond CMOS" technologies: Motivation

- Large number of emerging "Beyond CMOS" device concepts
 - Can those be used for data processing (computation/memory/interconnects...)?
 - Device fabrication: manufacturability? Variability? Reliability?
 - Architectures, design tools, libraries?



"Beyond CMOS" technologies: Towards design libraries?

The System/Circuit Designer and the Technologist Start from *Different Places*

10

SRC

"Beyond CMOS" technologies: Benchmarking Methodology

Workshop2: "Benchmarking of new beyond CMOS device concepts" on 10/13-14/11 in Athens

Benchmarking Beyond CMOS Devices

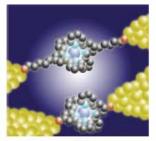
Technology	[Wires, graphene, MEMS etc please insert name]
Gain	
Signal/Noise ratio	
Non-linearity	
Speed	
Power consumption	
Architecture/Integrability	
(Inputs/outputs, digital, multilevel, analog, size etc.)	
Other specific properties	
Manufacturability	
(Fabrication processes needed, tolerances etc.)	
Timeline	
(When exploitable or when foreseen in production)	

Technologies under scope:

- Molecular Electronics
- MEMS
- Solid-State Quantum Computing
- Spintronics
- Nanowires
- Memristors
- Charge based Beyond CMDS, Non-Conventional FETs
- Graphene ⊭

Presentations of WS2 are available at: https://www.fp7-nanotec.eu/workshop2/presentations

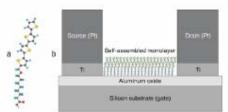
Slides re- Mol. Electronics, Memristors and Graphene transistors: Courtesy Dr. D. Vuillaume, Dr. J. Bollier and Dr. J. Kinaret (Workshop 2)


Agenda

- About NANO-TEC
 - Objectives
 - Activities
 - Timeline
- Beyond CMOS' devices
 - Taxonomy
 - Motivation
 - Benchmarking Methodology
- Building Bridges
 - Molecular Electronics
 - Nanowire Transistors
 - Memristors
 - Graphene
- Conclusion

Building Bridges: Molecular Electronics (1/3)

single molecule electronics



L < a few nm t < a few nm

basic science knowledge development

no foreseen applications in a reasonable time-scale

self-assembled molecular electronics

 $L \sim tens nm - \mu m$ t < a few nm

basic science knowledge development

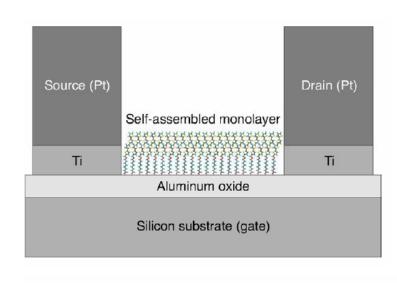
possible applications foreseen

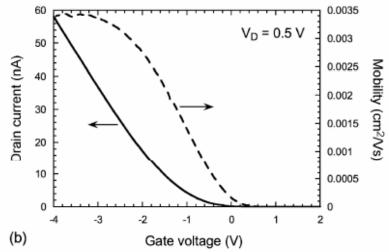
> **L** SAMFET

thin-film molecular electronics

L > μm t > few 10 nm

plastic electronics (OLED, OFET, OPV)


some products already commercialized

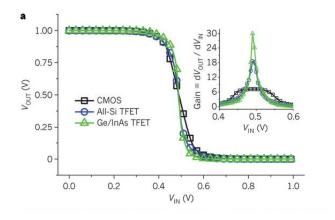


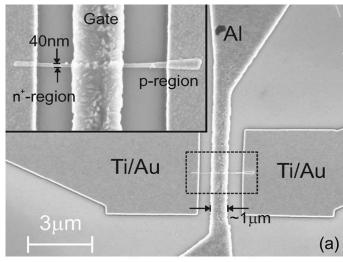
Building Bridges: Molecular Electronics (2/3)

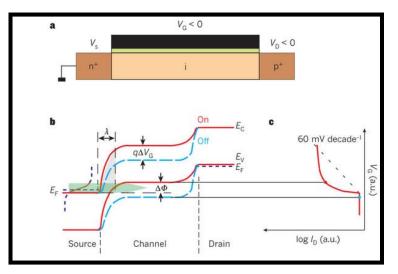
SAMFET: Self-Assembled Monolayer Field Effect Transistor

- Built by immersing a silicon substrate into a solution containing liquid crystalline molecules that self-assemble onto this substrate, resulting in a semiconductive layer, a single molecule thick.
- The monolayer of the SAMFET consists of molecules that are standing upright. Conduction takes place by charges jumping from one molecule to the other.
- As the length of the SAMFET increased, its level of conductivity decreased exponentially.
- The SAMFET can be used to make sensors that give a large signal that is triggered by a small change.

Building Bridges: Molecular Electronics (3/3)


Benchmarking Beyond CMOS Devices


Technology	Self-assembled molecular electronics
Gain/restoring level Signal/Noise ratio Non-linearity	Ok with SAMFET (to be optimized), (2-terminal junctionlow current (G ₀ max) Noise not yet studied (a few publications) Mol junctions are mainly non-linear
Speed Power consumption	low low (50 zJ/mol switch)
Architecture/Integrability (Inputs/outputs, digital, multilevel, analog, size etc.)	molecule-NP 2D and 3D arrays could implement some functions (e.g. reconfigurable logic, neuro-inspired function)
Other specific properties	almost infinite combination of molecules, adjustable by chemistry, specific design (1 molecule = 1 function)
Manufacturability (Fabrication processes needed, tolerances etc.)	solution process, compatible with flexible substrate. Defect control? large variability (but not a problem if we envision ANN applications)
Timeline (When exploitable or when foreseen in production)	> 5 - 10y (if ever?)



Building Bridges: Nanowire Transistors (1/5)

Tunnel Field Effect Transistors (TFET)

BTBT across the source-channel junction Controlled by the gate-to-source bias

Advantages

- Low power
- CMOS-toolset compatible

Challenges

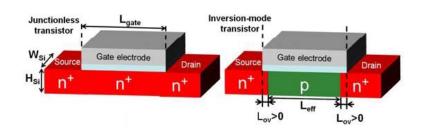
- Drive current enhancement scalability
- Shallow tunnel junctions engineering
- Steep subthreshold slope on a limited voltage range

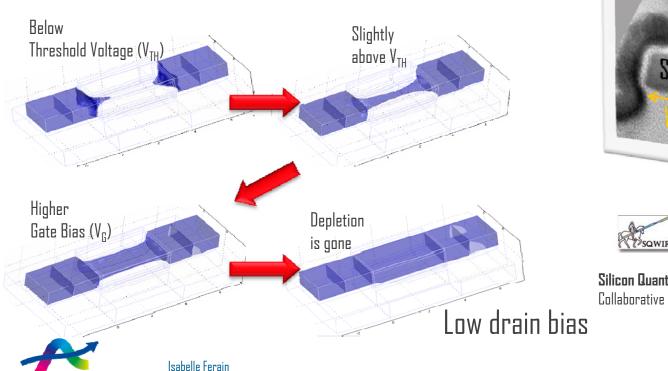
Isabelle Ferain Tyndall National Institute, University College Cork NAND-TEC: Building Bridges between Beyond CMOS Technologies and Design 16

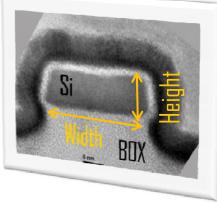
Building Bridges: Nanowire Transistors (2/5)

Renchmarking Beyond CMOS Devices

Technology	Tunnel FETs
Gain Signal/Noise ratio Non-linearity	Similar functionality than MOSFET but promises lower voltage and lower power consumption, I _{on} may be smaller, Potentially better noise margin and high gain at extremely low current/voltage
Speed Power consumption	Depends on the I _{on} that can be achieved, probably not faster, maybe a little bit smaller Lower power consumption
Architecture/Integrability (Inputs/outputs, digital, multilevel, analog, size etc.)	Similar architecture, some circuit changes needed, may have density penality but there is room for new clever circuit designs.
Other specific properties	
Manufacturability (Fabrication processes needed, tolerances etc.)	SiGe TFET CMOS compatible, Integration of III-V heterojunction TFETs need more work but should be possible, junction quality, interface states, self-alignment critical, variability may be more critical due to exponential dependence of tunneling, V_T variation, doping tails and stochastic behavior of doping, high-k gate stack
Timeline (When exploitable or when foreseen in production)	On the roadmap after GAA and conventional III-V $ ightarrow$ 5-10 years


Building Bridges: Nanowire Transistors (3/5)

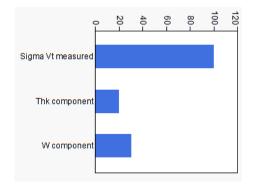

- Junctionless Field Effect Transistor
 - Gated resistor

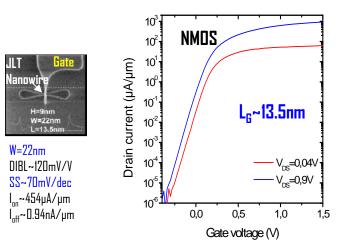

NO-TEC

- Pinch-off transistor
- Full depletion in off-state, controlled by the gate-to-channel work function difference

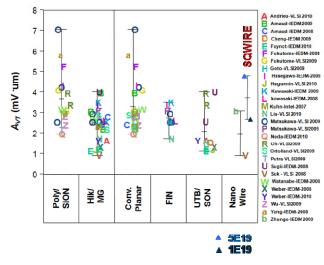
Tyndall National Institute, University College Cork

Silicon Quantum WIRE transistors (SQWIRE) Collaborative project, Grant agreement no: 257111


Building Bridges: Nanowire Transistors (4/5)


Advantages

- No shallow source/drain junctions required
- 60mV/decade subtreshold slope at Room T
- CMOS-toolset compatible, fabrication is simpler


Challenges

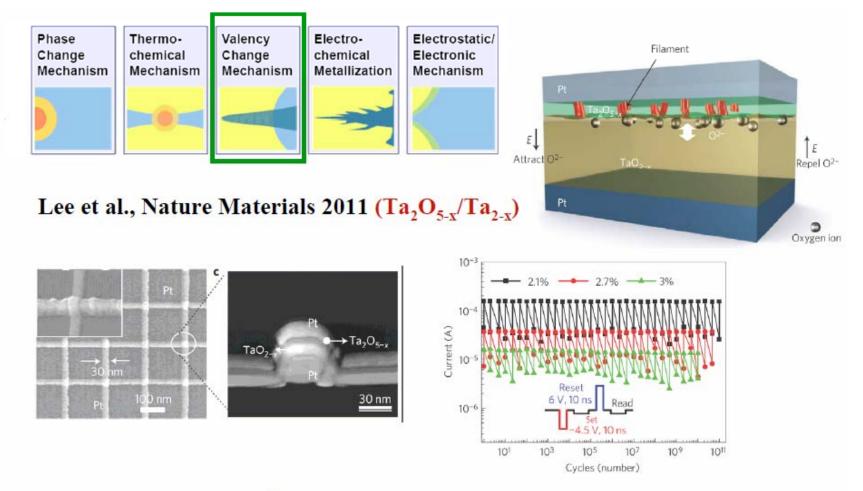
- Drive current enhancement
- Dimensions control

Literature data: Kuhn TED'11

Building Bridges: Nanowire Transistors (5/5)

Benchmarking Beyond CMOS Devices

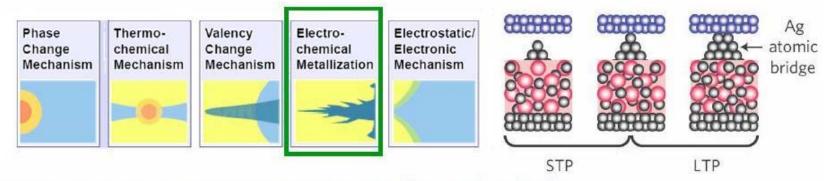
Technology	Junctionless Nanowire Field Effect Transistor (JNT)
Gain, Signal/Noise ratio Non-linearity	Not investigated yet (single-device characterization)
Speed Power consumption	CV/I: lower Miller capacitance than inversion mode FETs, SS~60mV/dec at V _{dd} =1V, I _{on} similar to IM FETs (contact resistance is the main issue!)
Architecture/Integrability (Inputs/outputs, digital, multilevel, analog, size etc.)	Same as FinFETs/GAA NW: high density required SOI is the substrate of choice (thermal dissipation issues?) Bulk Si OK
Other specific properties	
Manufacturability (Fabrication processes needed, tolerances etc.)	Fully CMOS compatible, no need for ultra- shallow junction engineering. Need for SOI thickness and LER control
Timeline (When exploitable or when foreseen in production)	Outperforms bulk Si GAA IM FETs at gate lengths < 25nm (in terms of SCE control), σ_{VT} being addressed,



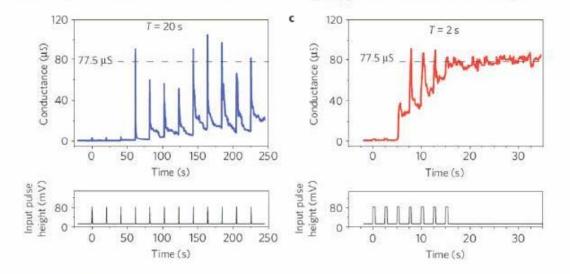
Building Bridges: Switching Memristors (1/5)

- Combines the electrical properties of a memory element and of a resistor
 - Memory switches
 - Resistance of the switch = f(voltage history)
 - Advantages
 - Faster and denser (memristors are small (< 50 x 50 nm^2)) than regular MOS transistors
 - Energy-efficient and Reconfigurable
- Applications
 - logic functions, FPGAs
 - NV RAM Technologies
 - Ferroelectric RAM (FRAM) as well as ferroelectric polarization memories made using organic materials
 - Phase-change memory (PCM) or phase-change RAM (PCRAM)
 - Conductive-bridging RAM (CBRAM)
 - Resistive RAM (RRAM or ReRAM)
 - Magnetic RAM (MRAM)

Switching Memristors (2/5)

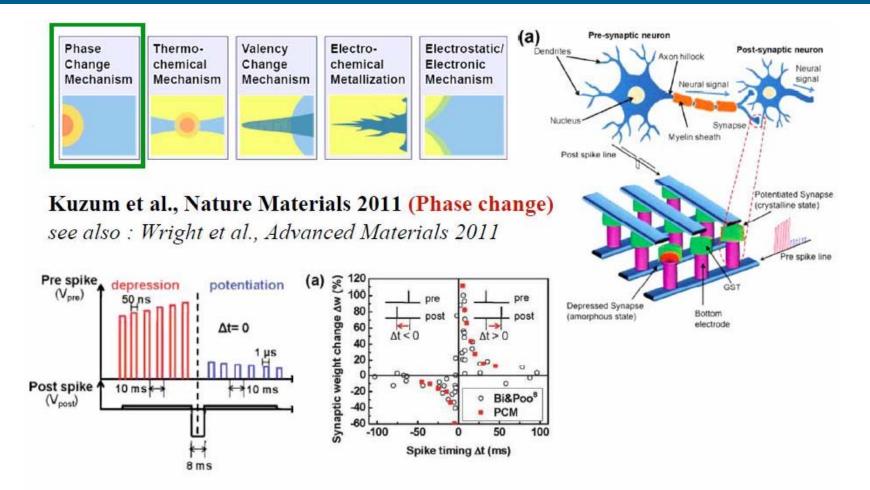


good cyclability > 10¹², fast (10ns) and reduced power consumption



NAND-TEC: Building Bridges between Beyond CMOS Technologies and Design 22

Switching Memristors (3/5)


Ohno et al., Nature Materials 2011 (Ag₂S atomic switch)

Short AND long term potentiation ! STDP ? Cyclability ?

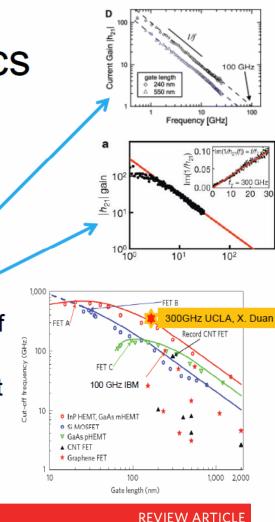
Switching Memristors (4/5)

Phase change : unipolar switching. STDP = yes, complicated ?

Switching memristors (5/5)

Technology <i>digital memristor</i>	РСМ	Red-Ox	FeT	STT
Gain, Signal/Noise ratio Non-linearity			N/A	
Speed Power consumption	50 ns 6 pJ	10 ns < 1 pJ	10 ns 10 fJ	25 ns 0.02-5pJ
Architecture/Integrability (Inputs/outputs, digital, multilevel, analog, size etc.)	6 F ²	5/8 F ²	5/8 F ²	20/40 F ²
Other specific properties				
prototypes	commercial	some		yes
forming step	no	some	no	no
switching	unipolar	both	bipolar	bipolar
good theoretical understanding	yes	no	yes	yes
Manufacturability		CMOS	compatible	
Timeline (When exploitable or when foreseen in production)	available	< 5 y	?	< 3 y

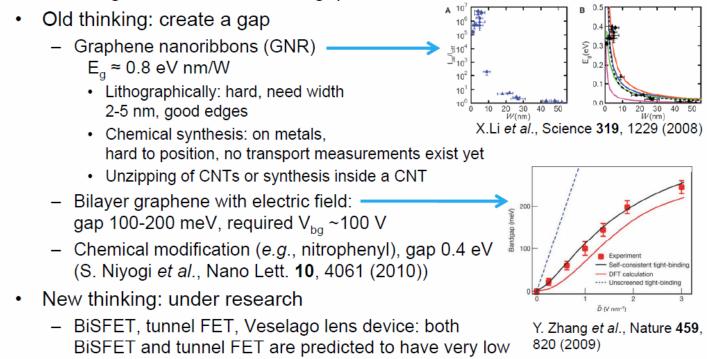
Graphene Transistors (1/4)


- Key improvement demanded:
 - Bandgap vs. mobility: high mobilities relate to gapless graphene \rightarrow useless for digital electronics
 - Fabrication: bandgap extremely sensitive to surface roughness variations
- Benchmarking:
 - Criteria are available
 - Some are met, e.g..
 - Devices at room temperature
 - Integrability
- No "beyond CMOS" due to lack of digital transistor:
 - 'CMOS logic requires both n and p-channel FETs with well controlled Vt, and graphene FETs with these properties have not yet been reported' (F. Schwierz, Nature Nano)

Graphene Transistors (2/4)

Analog electronics

- High mobility and high saturation velocity give promise for fast electronics
- Extrapolated performance IBM: f_T = 100 GHz @ 240 nm; UCLA: f_T = 300 GHz @ 144 nm
- Poor power gain due to absence of a gap
- Ambipolar: new design feature that enables novel devices (Palacios)


Graphene transistors

nature nanotechnology

Graphene Transistors (3/4)

Digital electronics

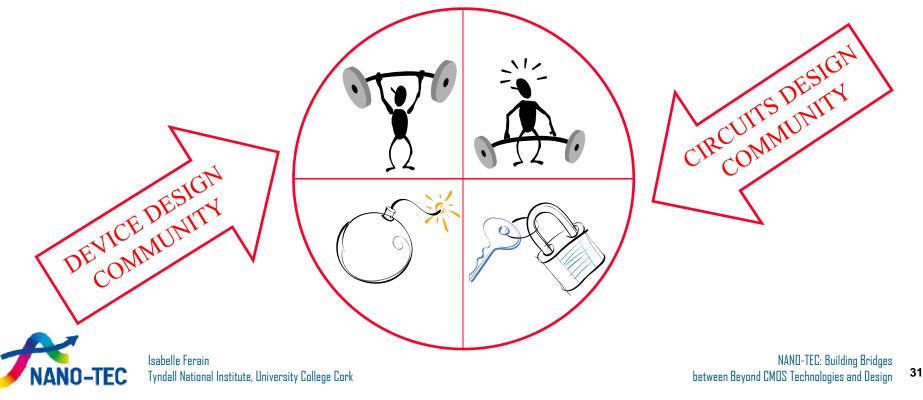
• Challenge: absence of a band gap makes it hard to turn the devices off

switching energies, but they have not been demostrated

experimentally

Graphene Transistors (4/4)

Technology	Graphene
Gain Signal/Noise ratio Non-linearity	Poor, would benefit from a gap
Speed Power consumption	High Low – high mobility, good gate coupling
Architecture/Integrability (Inputs/outputs, digital, multilevel, analog, size etc.)	Demonstrated integrability.
Other specific properties	System level integration - multifunctional
Manufacturability (Fabrication processes needed, tolerances etc.)	Mostly OK, except for ribbon fabrication Challenges in transferless fabrication
Timeline (When exploitable or when foreseen in production)	Optical and printable first (~2 years). Analog a few years later. Digital last. Non-standard devices (BiSFET etc.) not demonstrated yet.


Agenda

- About NANO-TEC
 - Objectives
 - Activities
 - Timeline
- Beyond CMOS' devices
 - Taxonomy
 - Motivation
 - Benchmarking Methodology
- Building Bridges
 - Molecular Electronics
 - Nanowire Transistors
 - Switching Memristors
 - Graphene Transistors
- Conclusion

Conclusion

- Building bridges 'Technology/Emerging devices→ ← Architecture/Design'
 - Device research: proofs of concept
 - limited amount of demonstrations at circuit levels
 - not enough data for current design tools
 - Logic / Memory applications: limited space for other types of application
 - Design Community: Join the discussion at the next NAND-TEC Workshop ...

NANO-TEC Workshop 3: "SWOT Analysis of the Technology–Design Ecosystem"

- Time: May 30-31, 2012
- Location: Hotel Beau Rivage Palace Lausanne, Switzerland
- Fee: free of charge
- Deadline May 15, 2012
- Program:
 - a series of plenary presentations on several selected technologies
 - a panel discussion on the programmatic and explorative perspectives of these technologies
- Join the discussion on a SWOT Analysis of Beyond CMOS and tell the technology community about designer's needs

"SWOT Analysis of the Technology-Design Ecosystem"

30-31 MAY 2012

Hotel Beau Rivage Palace, Lausanne, Switzerland.

Deadline for registration:

15 May 2012

register online at: https://www.fp7-nanotec.eu/show/events

References

Beyond CMOS devices (pictures)

- Mottaghi, M. et al. Adv. Funct. Mater. 17, 597–604 (2007) .
- H. W. Schumacher et al., Applied Physics Letters 75(8) 1999.
- http://www.nanoelectronics.ch/media/index.php

Molecular Electronics:

- K. Terabe et al., Quantized conductance atomic switch, Nature 2005:433. pp. 47-50.
- Tunnel FETs:
 - A.M. Ionescu et al. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 2011; 479, pp. 329–337; K. E. Moselund et al. Silicon Nanowire Tunnel FETs: Low-Temperature Operation and Influence of High-k Gate Dielectric. IEEE Transactions on Electron Devices, 2011;58(9), p.911.

Gated Resistor:

- JP Colinge et al. Nanowire transistors without junctions. Nature Nanotechnology 2010; K. Kuhn et al., Process Technology Variation. IEEE Transactions on Electron Devices, 2011: 58(8), p.2197.
- Memristors:
 - Waser et al., Nature Materials 2007; Lee et al. Nature Materials 2011 (Ta₂D_{5-x}/Ta_{2-x}); Ohno et al. Nature Materials 2011 (Ag2S atomic switch); Kuzum et al. Nature Materials 2011 (Phase change) and Wrigth et al., Advanced Materials 2011.
- Graphene Transistors:
 - D. Reddy et al., J. Phys. D 44, 313001 (2011); F. Schwierz, Nature Nanotechnology 5, 487 (2010); S.K. Banarjee et al., Proc. IEEE 98, 2032 (2010); A. Venugopal et al., J. Appl. Phys. 109, 104511 (2011) and S. Bae et al. Nature Nano. 5, 571 (2010).

33