Benchmarking for Beyond CMOS technologies

Prof Jouni Ahopelto VTT, Finland, jouni.ahopelto@vtt.fi

NANO-TEC has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257964

Outline

- Motivation
- NANO-TEC project
- Benchmarking procedure
- Examples
- Conclusions

Motivation

- Large number of emerging "Beyond CMOS" device concepts
- Various types of functions
- Can those be used for data processing (computation/memory/interconnects...)?
- Device fabrication/production?
- Architectures, design tools, libraries?
- Prospects?
- Unique exercise in advancing the research of future emerging devices in Europe.

NANO-TEC project

Aim is to:

- To identify the emerging device concepts and technologies
- To bridge the gap between the emerging technologies and design

Modus operandi: Series of workshops with converging focus

Benchmarking exercise in US

5

The Quest for a Better Switch

The SRC Nanoelectronics Research Initiative

Bernstein et al., Device and Architecture Outlook for Beyond CMOS Switches, Proc. IEEE 98 (2010) 2169.

Jouni Ahopelto VTT

Aim to a broader scope:

- No direct comparison with CMOS
- Allow for other concepts in addition to digital switches
- Challenge the design community

Workshop 1: Focus on concepts and technologies Workshop 2: Focus more on devices Workshop 3: SWOT analysis

Benchmarking Beyond CMOS Devices

Technology	[Wires, graphene, MEMS etc please insert name]
Gain Signal/Noise ratio Non-linearity	
Speed Power consumption	
Architecture/Integrability (Inputs/outputs, digital, multilevel, analog, size etc.)	
Other specific properties	
Manufacturability (Fabrication processes needed, tolerances etc.)	
Timeline (When exploitable or when foreseen in production)	

- Molecular Electronics
- MEMS
- Solid-State Quantum Computing
- Spintronics
- Nanowires
- Memristors
- Graphene

Presentations are available at the NANO-TEC web site www.fp7-nanotec.eu

10

Example: Molecular electronics

D. Vuillaume, 2nd NANO-TEC Workshop

Single molecule electronics

L < a few nm t < a few nm

basic science knowledge development

no foreseen applications in a reasonable time-scale Self-assembled molecular electronics

L ~ tens nm - μm t < a few nm

basic science knowledge development

possible applications foreseen

Thin film molecular electronics

L > μm t > few 10 nm

plastic electronics (OLED, OFET, OPV)

some products already commercialized

11

Jouni Ahopelto VTT

Example: Molecular electronics

Benchmarking Beyond CMOS Devices

Technology	Molecular Electronics D. Vuillaume, CNRS & University of Lille	
Gain Signal/Noise ratio Non-linearity Speed Power consumption Architecture/Integrability (Inputs/outputs, digital, multilevel, analog, size etc.)	Ok with SAMFET (to be optimized), 2-terminal junction: low current Noise not vet studied (a few publications) M Lc Lc M fu M	Au Nanoparticles
Other specific properties	Almost infinite combination of molecules, adjustable by chemistry, specific design (1 molecule = 1 function)	
Manufacturability (Fabrication processes needed, tolerances etc.)	Solution processing, compatible with flexible substrate. Defect control? Large variability (but not a problem if we envision artificial neural networks)	
Timeline (When exploitable or when foreseen in production)	> 5 – 10 years (if ever?)	

- Molecular Electronics
- MEMS
- Solid-State Quantum Computing
- Spintronics
- Nanowires
- Memristors
- Graphene

Conclusions

- Technology/Emerging devices -> <- Architecture/Design
 - Quite apart
- Emerging device concepts: Not enough data for current design tools
 - Transfer functions, memory, intereconnects, tolerances, noise...
- Design tools have to develop towards multiscale approaches
 - Physics, non-Boolean, multilevel...
- Suitable benchmarking method for Beyond CMOS devices and architectures?