Embedded Tutorial:

BEYOND CMOS -BENCHMARKING FOR FUTURE TECHNOLOGIES"

Moderators:

Prof Clivia M Sotomayor Torres, Catalan Institute of Nanotechnology, Barcelona, Spain

Prof Wolfgang Rosenstiel, edacentrum and University of Tuebingen, Germany

NANO-TEC has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257964

About NANO-TEC

AIMS

- To identify the next generation of (emerging) device concepts and technologies for ICT.
- To build a joint technology-design community to coordinate research efforts in nanoelectronics.

NANO-TEC timeline

January 2010October 201130-31 May 2012Autumn 2012GranadaAthensLausanne
--

Mart Graef TUDelft Embedded Tutorial presented by the NANO-TEC Project: "BEYOND CMOS - BENCHMARKING FOR FUTURE TECHNOLOGIES"

3

Presentations

• Emerging Technologies: More Moore and More than Moore

- Dr Mart Graef, Delft University of Technology, The Netherlands
- Technology and Design challenges in future low power memory devices and circuits
 - Dr Paolo Fantini, Micron Semiconductors, Italy
- Bridging Technology and Design for Beyond CMOS
 - Prof Paolo Lugli (tentative), Technical University of Munich, Germany
- Bridging Technology and design in More than Moore
 - Dr Wladek Grabinski, EPFL, Switzerland
- Benchmarking for Beyond CMOS technologies
 - Prof Jouni Ahopelto VTT, Finland

4

Emerging Technologies: More Moore and More than Moore

Dr Mart Graef, Delft University of Technology, The Netherlands, m.w.m.graef@tudelft.nl

NANO-TEC has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257964

Overview

Beyond CMOS:

What is new about emerging technologies?

- Miniaturization
- Parameterization
- Diversification
- Designability

6

Constant Field Scaling

	V — • v		
	t _{ox}	w	
	gate	∢ ►	
CX	n+	n⁺ ‡x _D	
α		-	
a	V/a — wi	ring	

dimensions t _{ox} , L, W	1/α
doping	α
voltage	1/α
integration density	α ²
delay	1/α
power dissipation/Tr	1/α²

Source: More than Moore White Paper, ITRS (2011)

N_A

More Moore: Increasing complexity

Parameterization of emerging technologies

Mart Graef **TUDelft**

Reaching dimension/complexity limits

Source: STMicroelectronics

"More Moore" & "More than Moore"

Source: ITRS (2011)

"More Moore" & "More than Moore"

Source: ENIAC

Design Hierarchy

- Analog and digital approach design from opposite directions
- Mixed-signal: need to "meet in the middle"

Source: Maarten Vertregt, NXP

13

Mart Graef TUDelft

MM & MtM: The Co-Design Callenge

Mart Graef TUDelft

MM & MtM: Design Aspects

• More Moore:

Design technologies that enable equivalent scaling (high performance, low power, high reliability, low cost, high design productivity)

- Design for variability
- Low power design (sleep modes, hibernation, clock gating, multi-VDD, ...)
- Homogeneous and heterogeneous multicore SoC architectures

• More than Moore:

Design technologies that enable functional diversification

- Heterogeneous system partitioning and simulation;
- Analog and mixed signal design technologies for sensors and actuators;
- New methods and tools for co-design and co-simulation of SiP, MEMS, and biotechnology