

Identification-Benchmarking-SWOT Analysis-Recommendations of Beyond CMOS Technologies

Coordination Action in FP7 Contract no. 257694

J. Ahopelto VTT Technical Research Centre of Finland

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

PROJECT PARTNERS

Jouni Ahopelto Alain Cappy Isabelle Ferain/Georgios Fagas (J-P Colinge) **Piotr Grabiec** Mart W Graef Wladek Grabinski (A lonescu) **Guilhem Larrieu** Androula Nassiopoulou Ralf Popp Wolfgang Rosenstiel **Clivia M Sotomayor Torres Thomas Swahn** Helena Theander Christian Pithan (R Wasser) **Dag Winkler**

INC9, Berlin 2013

- Motivation
- Methodology
 - International Cooperation
- Examples of outcome
- Summary

MOTIVATION

- CMOS era coming to its end? Probably not in coming tens of years
- Large number of emerging "Beyond CMOS" device concepts
- Can those be used for data processing (computation/memory/interconnects...)?
- Device fabrication: Manufacturability? Variability? Reliability?
- Architectures, design tools, libraries?

INC9, Berlin 2013

NANO-TEC

PROJECT CONCEPT

Aim is to:

- Identify, benchmark and SWOT analyse the emerging device concepts and technologies
- Bridge the gap between the emerging technologies and design
- Provide recommendations for future actions in this field in Europe

METHODOLOGY

Series of Workshops was arranged to carry out the mission

Input from broad range of experts was collected

 Academia; EU projects on nanoelectronics, literature, conferences, position papers

INC9, Berlin 2013

Recommendations

6

NANO-TEC

- Research organisations; LETI, IMEC, SRC (ITRS)
- Industry; IBM, HP, Micron
- NANO-TEC consortium

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

METHODOLOGY

In the Workshops:

- Invited talks on various fields
 - Speakers from Europe, US and Asia
 - Discussants
 - Rapporteurs
 - Working groups
 - Panels
- Advisory Board

First excercise to Identify/Benchmark/SWOT Beyond CMOS devices in Europe

NANO-TEC

NANO-TEC Advisory Board

Michel Brillouet (CEA-LETI)

Roger de Keersmaecker (IMEC)

Livio Baldi

(Micron)

Danilo Demarchi (Polytechnic Univ Torino)

Very engaged board members!

INC9, Berlin 2013

NANO-TEC WORKSHOP SERIES

WS1: Identify Technologies & Designs for new devices to work

Granada, 20-21 January 2011

INC9, Berlin 2013

NANO-TEC WORKSHOP SERIES: WS1

Speakers

Nanotechnology trends for the next decade J Welser, SRC

Compound semiconductorbased electronics W Stanchina, Pittsburg

Carbon-based electronics J.-Sun Moon, HP

Bridge to Design P Lugli, TU München

Silicon-based electronics M Brillouet, CEA LETI

Analogue-Mixed signal design H Graeb, TU München

Spintronics S Valenzuela, ICN

INC9, Berlin 2013

NANO-TEC WORKSHOP SERIES

INC9, Berlin 2013

NANO-TEC WORKSHOP SERIES: WS2

Speakers

Molecular Electronics D Vuillaume, CNRS

Nanowires Heike Riel, IBM Zurich

MEMS Lina Sarro, TU Delft

Memristors J Grollier, CNRS-Thales

Solid State Quantum Computing Jaw-Shen Tsai NEC &The Riken Institute

Graphene J Kinaret, Chalmers University of Technology

Spintronics J Åkerman, Gothenburg U & NanoSC

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

INC9, Berlin 2013

NANO-TEC WORKSHOP SERIES: WS2

Panel discussion on how new device concepts could meet the needs set by the design community and vice versa

Sandip Tiwari Lars Hedrich

Paolo Lugli

Chair Dan Herr

Diederik Verkest

13

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

NANO-TEC WORKSHOP SERIES

INC9, Berlin 2013

NANO-TEC WORKSHOP SERIES: WS3

Speakers

Solid-state Quantum Computing Goran Wendin, Chalmers, Gothenburg

Molecular Electronics *Prof. Dr.* Sense Jan van der Molen, Leiden Univ.

Nanowires Dr. Heike Riel, IBM

Spintronics *Prof. Dr. Charles Gould, University of Wuerzburg* **Graphene** *Prof. Dr. Max Lemme, KTH, Stockholm*

MEMS *Dr. Michael Gaitan, NIST, Gaithensburg, MD, U.S.A.*

Neuromorphic Computing *Dr. Julie Grollier, CNRS-Thales, Palaiseau*

INC9, Berlin 2013

NANO-TEC WORKSHOP SERIES

WS4:

Recommenda

tions on

combined

TEC-DES

eco-system

NANO-TEC WORKSHOP SERIES: WS4

Speakers

Nanoelectronics in EU Horizon 2020, Dirk Beernaert, EC

SRC views on nanoelectronics, Victor Zhirnov, SRC

Neuromorphic computing as a new computing paradigm Prof. Dr Simon Thorpe, CNRS

Topological insulators Prof. Dr. Laurens Molenkamp, Univ. Wuerzburg Panel Discussion: "Design Tools for Beyond CMOS technologies" Mustafa Badaroglu, IMEC

Wolfgang Rosenstiel, edacentrum GmbH

Paolo Lugli, Technical University of Munich

Chair Livio Baldi

17

Position Papers by

2008 CNTs

Position papers can be downloaded from www.phantomsnet.net/nanoICT/

2008 NEMs

2009 Modelling

2010 Nanowires

2011 Single molecule technology

2011 Graphene

18

Identifying the Beyond CMOS Technologies

WS1: Identify Technologies & Designs for new devices to work

In the discussions after the Workshop 1 the following technologies were selected

- Molecular Electronics
- MEMS
- Solid-State Quantum Computing
- Spintronics
- Nanowires
- Memristors
- Graphene

Benchmarking exercise in US

Bernstein et al., Device and Architecture Outlook for Beyond CMOS Switches, Proc. IEEE 98 (2010) 2169.

BENCHMARKING

WS2: Benchmark of new Beyond-CMOS device and design concepts

Aim to a broader scope:

- No direct comparison
 with CMOS
- Allow for other concepts in addition to digital switches
- Challenge the design community

All the speakes filled the Table in advance

Benchmarking Beyond CMOS Devices

Technology	[Wires, graphene, MEMS etc please insert name]
Gain	
Signal/Noise ratio	
Non-linearity	
Speed	
Power consumption	
Architecture/Integrability	
(Inputs/outputs, digital, multilevel, analog, size etc.)	
Other specific properties	
Manufacturability	
(Fabrication processes needed, tolerances etc.)	
Timeline	
(When exploitable or when foreseen in production)	

INC9, Berlin 2013

Example: Molecular Electronics

single molecule electronics

L < a few nm t < a few nm

basic science knowledge development

no foreseen applications in a reasonable time-scale self-assembled molecular electronics

L ~ tens nm - μm t < a few nm

basic science knowledge development

possible applications foreseen

thin-film molecular electronics

L > μm t > few 10 nm

plastic electronics (OLED, OFET, OPV)

some products already commercialized

Example: Molecular Electronics

Benchmarking Beyond CMOS Devices NANO-TEC

D. Vuillaume, CNRS & University of Lille
Ok with SAMFET (to be optimized), 2-terminal junction: low current Noise not yet studied (a few publications)

F. Alibart et. al, Adv. Func. Mater. 20 (2010) 330.

(Fabrication processes needed, tolerances etc.)	Defect control? Large variability (but not a problem if we envision artificial neural networks)
Timeline	> 5 – 10 years (if ever?)
(When exploitable or when foreseen in production)	

SWOT Analysis

WS3: SWOT analysis of benchmarked devices and designs

Tables were compiled in the Working Groups during the Workshop 3

Molecular electronics

 Strengths Making use of quantum effects at room temperature Natural nanometer scale Programmable functionalities (vs. light, E-field, temperature) 	 Weaknesses Low stability at room temperature Low conductance per molecule Electrodes define true dimensions Low performance compared to Si MOSFET
 Opportunities Multimolecular devices (by self-assembly: SAMs, networks) Sensors and specific functionalities connected to CMOS Control of quantum interference 	 Threats Mostly basic research yet A niche technology at most Low interaction with design communities

INC9, Berlin 2013

Neuromorphic Computing

 Strengths Low power Speed Non-volatility 	 Weaknesses Need to improve OFF/ON ratio Memristors physics
 Opportunities Possibility of 3T devices (ex atomic switch) New reconfigurable architectures Logic in memory 	ThreatsNot sufficient endurance

RECOMMENDATIONS

WS4: Recommenda tions on combined TEC-DES eco-system

The Recommendations were drafted in the Working Groups during the Workshop 4 and finalised by the Rapporteurs

Recommendations for:

- Technology and design for information processing in Beyond CMOS
- Charge-based state variable technologies
- Non charge-based state variable technologies
- Technology and Design of new computing paradigms
- The ecosystem technology in Beyond CMOS in Europe

Download Recommendations From the Web Site

www.fp7-nanotec.eu

- Workshop presentations
- "Yellow Pages"
- Discussion Forum
- Recommendations
- Etc.

RECOMMENDATIONS

For *all state variables*, be these charge-based or not, it is recommended that research towards a better theoretical understanding of the underlying physics and material science of nano-scale devices is supported towards potential breakthroughs.

It is recommended to continue the exploration of *novel computation approaches in general*. In particular, a *comparative and dynamic analysis of the interaction between design and the emerging computation technologies* as an integral part of the R&D efforts would provide Europe with a valuable and probably decisive advantage.

The consortium finds that strong motivation and support are needed in order to facilitate *communication and cooperation between design and technology actors* from academia and industry. The consortium recommends that a couple of pilot projects are launched addressing explicitly not only the technical aspects but, above all, methodological aspects of this interactions with one or two well defined examples of novel state variables and a specific application each.

Vertical Value Chain

Ecosystem Technology

RESEARCH INFRASTRUCTURES

Establish an European Research Infrastructure Network for Beyond CMOS technologies

- Research Institutes
- Academic facilities
 - Flexible processes
 - Relaxed specs

INC9, Berlin 2013

- First excersise in Europe on Beyond CMOS devices
- Broadband international cooperation
- Very open and positive spirit
- Recommendations
- NANO-TEC was a start...

Acknowledgements

- Speakers, Colleagues in the Panels and Advisory Committee
- All the participants
- NANO-TEC Consortium
- The European Commission (Contract no. 257694)

